Background The range of body sizes in Carnivora is unparalleled in any other mammalian order—the heaviest species is 130,000 times heavier than the lightest and the longest species is 50 times longer than the shortest. However, the molecular mechanisms underlying these huge differences in body size have not been explored. Results Herein, we performed a comparative genomics analysis of 20 carnivores to explore the evolutionary basis of the order’s great variations in body size. Phylogenetic generalized least squares (PGLS) revealed that 337 genes were significantly related to both head body length and body mass; these genes were defined as body size associated genes (BSAGs). Fourteen positively-related BSAGs were found to be associated with obesity, and three of these were under rapid evolution in the extremely large carnivores, suggesting that these obesity-related BSAGs might have driven the body size expansion in carnivores. Interestingly, 100 BSAGs were statistically significantly enriched in cancer control in carnivores, and 15 of which were found to be under rapid evolution in extremely large carnivores. These results suggested that large carnivores might have evolved an effective mechanism to resist cancer, which could be regarded as molecular evidence to support Peto’s paradox. For small carnivores, we identified 15 rapidly evolving genes and found six genes with fixed amino acid changes that were reported to reduce body size. Conclusions This study brings new insights into the molecular mechanisms that drove the diversifying evolution of body size in carnivores, and provides new target genes for exploring the mysteries of body size evolution in mammals.
The epidermis plays an indispensable barrier function in animals. Some species have evolved unique epidermal structures to adapt to different environments. Aquatic and semi‐aquatic mammals (cetaceans, manatees, and hippopotamus) are good models to study the evolution of epidermal structures because of their exceptionally thickened stratum spinosum, the lack of stratum granulosum, and the parakeratotic stratum corneum. This study aimed to analyze an upstream regulatory gene transient receptor potential cation channel, subfamily V, member 3 (TRPV3) of epidermal differentiation so as to explore the association between TRPV3 evolution and epidermal changes in mammals. Inactivating mutations were detected in almost all the aquatic cetaceans and several terrestrial mammals. Relaxed selective pressure was examined in the cetacean lineages with inactivated TRPV3, which might contribute to its exceptionally thickened stratum spinosum as the significant thickening of stratum spinosum in TRPV3 knock‐out mouse. However, functional TRPV3 may exist in several terrestrial mammals due to their strong purifying selection, although they have “inactivating mutations.” Further, for intact sequences, relaxed selective constraints on the TRPV3 gene were also detected in aquatic cetaceans, manatees, and semi‐aquatic hippopotamus. However, they had intact TRPV3, suggesting that the accumulation of inactivating mutations might have lagged behind the relaxed selective pressure. The results of this study revealed the decay of TRPV3 being the genomic trace of epidermal development in aquatic and semi‐aquatic mammals. They provided insights into convergently evolutionary changes of epidermal structures during the transition from the terrestrial to the aquatic environment.
Background Mammals have wide variations in testicular position, with scrotal testes in some species and ascrotal testes in others. Although cryptorchidism is hazardous to human health, some mammalian taxa are natural cryptorchids. However, the evolution of testicular position and the molecular mechanisms underlying the maintenance of health, including reproductive health, in ascrotal mammals are not clear. Results In the present study, comparative genomics and evolutionary analyses revealed that genes associated with the extracellular matrix and muscle, contributing to the development of the gubernaculum, were involved in the evolution of testicular position in mammals. Moreover, genes related to testicular position were significantly associated with spermatogenesis and sperm fertility. These genes showed rapid evolution and the signature of positive selection, with specific substitutions in ascrotal mammals. Genes associated with testicular position were significantly enriched in functions and pathways related to cancer, DNA repair, DNA replication, and autophagy. Conclusions Our results revealed that alterations in gubernaculum development contributed to the evolution of testicular position in mammals and provided the first support for two hypotheses for variation in testicular position in mammals, the “cooling hypothesis”, which proposes that the scrotum provides a cool environment for acutely heat-sensitive sperm and the “training hypothesis”, which proposes that the scrotum develops the sperm by exposing them to an exterior environment. Further, we identified cancer resistance and DNA repair as potential protective mechanisms in natural cryptorchids. These findings provide general insights into cryptorchidism and have implications for health and infertility both in humans and domestic mammals.
This research estimated Chinese rural residents' willingness to pay for rural solid wastes recycling project. Dichotomous choice format contingent valuation method was employed to diverse rural residents' preference. 4795 Households had been interviewed for collecting primary data, and had been estimated respondents' will by logistic regression model. It indicated that the respondents would refuse to support solid wastes recycling project due to households' income restriction. The mean annual WTP of rural residents were 23.41 Chinese Yuan per household. In conclusion the rural solid wastes recycling project is acceptable and accessible for implementation in Chinese rural area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.