This review describes the mechanisms of immune response following DNA vaccination. The efficacy of DNA vaccines in animal models is highlighted, especially in viral diseases against which no widely accepted vaccination is currently available. Emphasis is given to possible therapeutic vaccination in chronic infections due to persisting virus genomes, such as recurrent herpes (HSV-1 and HSV-2), pre-AIDS (HIV-1) and/or chronic hepatitis B (HBV). In these, the problem of introducing foreign viral DNA may not be of crucial importance, since the immunised subject is already a viral DNA (or provirus) carrier. The DNA-based immunisation strategies may overcome several problems of classical viral vaccines. Novel DNA vaccines could induce immunity against multiple viral epitopes including the conservative type common ones, which do not undergo antigenic drifts. Within the immunised host, they mimic the effect of live attenuated viral vaccines when continuously expressing the polypeptide in question. For this reason they directly stimulate the antigen-presenting cells, especially dendritic cells. The antigen encoded by plasmid elicits T helper cell activity (Th1 and Th2 type responses), primes the cytotoxic T cell memory and may induce a satisfactory humoral response. The efficacy of DNA vaccines can be improved by adding plasmids encoding immunomodulatory cytokines and/or their co-receptors.
The interspecies ICSI may be a powerful tool for the analysis of sperm epigenetic status even with a very low number of spermatozoa available. This analysis could be used as an additional approach for the assessment of certain forms of human infertility, as well as for testing the normality of male gametes obtained from embryonic stem cells.
For somatic cell nuclear transfer cytoplasts from metaphase II, oocytes are exclusively used. However, it is evident that certain reprogramming activities are present in oocytes even at earlier stages of maturation. These activities are, however, only poorly characterised. The main reason for this is that even the intrinsic oocyte processes are insufficiently understood. The mammalian oocyte is a highly specialised cell that harbours many specific characteristics. One of these is its particularly large size when compared to somatic cells. As the oocyte enters the growth phase its volume, as well as the amount of material, increases considerably. Thus, it is clear that the oocyte must possess the machinery to accomplish this incredible material accumulation. When the growth phase is completed, the transcription ceases and the oocyte becomes transcriptionally inactive. In our study, we have used the model system of oocyte fusion (transcribing x non-transcribing germinal vesicle (GV) stage oocytes) as a substitute for a somatic cell nuclear transfer schemes where the somatic cell nucleus would be introduced into a cytoplast obtained from a GV stage oocyte. We wanted to determine if the fully grown GV stage oocyte could induce reprogramming of transcriptionally active transferred nucleus by suppressing this activity. In order to evaluate possible changes in transcriptional properties after nuclear transfer, we also investigated the mechanism of transcriptional silencing taking place when the oocyte reaches its full size as well as the fate of the components namely of the RNA polymerase II (Pol II) transcriptional and splicing machinery. Here, we show that while the Pol II is degraded in fully grown GV stage oocytes and the splicing proteins undergo significant rearrangement, these oocytes are unable to induce similar changes in transcriptionally active nuclei even after a prolonged culture interval.
Prion disorders are fatal neurodegenerative diseases caused by the autocatalytic conversion of a natively occurring prion protein (PrP C ) into its misfolded infectious form (PrP TSE ). The proven resistance of PrP TSE to common disinfection procedures increases the risk of prion transmission in medical settings. Herein, we present the effective photodynamic inactivation (PDI) of prions by disulfonated hydroxyaluminum phthalocyanine (AlPcOH(SO 3 ) 2 ) utilizing two custom-built red light sources. The treatment eliminates PrP TSE signal in infectious mouse brain homogenate with efficiency that depends on light intensity but has a low effect on the overall protein content. Importantly, singlet oxygen (O 2 ( 1 Δ g )) is the only species significantly photogenerated by AlPcOH(SO 3 ) 2 , and it is responsible for the PDI of prions. More intensive light conditions show not only higher O 2 ( 1 Δ g ) production but also decreases in AlPcOH(SO 3 ) 2 photostability. Our findings suggest that PDI by AlPcOH(SO 3 ) 2 -generated O 2 ( 1 Δ g ) represents a promising approach for prion inactivation that may be useful in future decontamination strategies for delicate medical tools. K E Y W O R D S decontamination, photodynamic inactivation, phthalocyanines, prions, singlet oxygen
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.