International audienceTandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmospher
The icy moons of Uranus may contain subsurface oceans. Such oceans could be detected and characterized using measurements of magnetic fields induced by Uranus' time‐varying magnetospheric field. Here we explore this possibility for Uranus's five major moons, with a focus on Ariel. We find that the magnetic field at each moon is dominated by the synodic frequency with amplitudes ranging from ∼4 nT at Oberon up to ∼300 nT at Miranda. If these bodies contain oceans with sufficient thicknesses (>∼3–40 km) and conductivities (>2 S m−1) even underlying relatively thick (∼50 km) ice shells, the induced surface fields should have amplitudes exceeding the typical ∼1 nT sensitivity of spacecraft magnetometry investigations. Furthermore, the magnetic field variations at the moons span periods ranging from 1 to 103 h. These could enable long‐term measurements to separately constrain ocean and ice thicknesses and ocean salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.