Colloidal superparticles are nanoparticle assemblies in the form of colloidal particles. The assembly of nanoscopic objects into mesoscopic or macroscopic complex architectures allows bottom-up fabrication of functional materials. We report that the self-assembly of cadmium selenide-cadmium sulfide (CdSe-CdS) core-shell semiconductor nanorods, mediated by shape and structural anisotropy, produces mesoscopic colloidal superparticles having multiple well-defined supercrystalline domains. Moreover, functionality-based anisotropic interactions between these CdSe-CdS nanorods can be kinetically introduced during the self-assembly and, in turn, yield single-domain, needle-like superparticles with parallel alignment of constituent nanorods. Unidirectional patterning of these mesoscopic needle-like superparticles gives rise to the lateral alignment of CdSe-CdS nanorods into macroscopic, uniform, freestanding polymer films that exhibit strong photoluminescence with a striking anisotropy, enabling their use as downconversion phosphors to create polarized light-emitting diodes.
Surface enhanced Raman scattering (SERS) is a trace detection technique that extends even to single molecule detection. Its potential application to the noninvasive recognition of lung malignancies by detecting volatile organic compounds (VOCs) that serve as biomarkers would be a breakthrough in early cancer diagnostics. This application, however, is currently limited by two main factors: (1) most VOC biomarkers exhibit only weak Raman scattering; and (2) the high mobility of gaseous molecules results in a low adsorptivity on solid substrates. To enhance the adsorption of gaseous molecules, a ZIF-8 layer is coated onto a self-assembly of gold superparticles (GSPs) in order to slow the flow rate of gaseous biomarkers and depress the exponential decay of the electromagnetic field around the GSP surfaces. Gaseous aldehydes that are released as a result of tumor-specific tissue composition and metabolism, thereby acting as indicators of lung cancer, are guided onto SERS-active GSPs substrates through a ZIF-8 channel. Through a Schiff base reaction with 4-aminothiophenol pregrafted onto gold GSPs, gaseous aldehydes are captured with a 10 ppb limit of detection, demonstrating tremendous prospects for in vitro diagnoses of early stage lung cancer.
Bone, as a mineralized composite of inorganic (mostly carbonated hydroxyapatite) and organic (mainly type I collagen) phases, possesses a unique combination of remarkable strength and toughness. Its excellent mechanical properties are related to its hierarchical structures and precise organization of the inorganic and organic phases at the nanoscale: Nanometer-sized hydroxyapatite crystals periodically deposit within the gap zones of collagen fibrils during bone biomineralization process. This hierarchical arrangement produces nanomechanical heterogeneities, which enable a mechanism for high energy dissipation and resistance to fracture. The excellent mechanical properties integrated with the hierarchical nanostructure of bone have inspired chemists and material scientists to develop biomimetic strategies for artificial bone grafts in tissue engineering (TE). This critical review provides a broad overview of the current mechanisms involved in bone biomineralization, and the relationship between bone hierarchical structures and the deformation mechanism. Our goal in this review is to inspire the application of these principles toward bone TE.
Colloidal superparticles are size- and shape-controlled nanoparticle assemblies in the form of colloidal particles. Because these superparticles can exhibit physical and chemical properties different from both individual nanoparticles and their bulk assemblies, the development of superparticle synthesis has attracted significant research attention and is emerging as a new frontier in the field of nanotechnology. In this review, we discuss theoretical considerations on the nucleation and growth of colloidal superparticles. We then present recent progress in the synthesis and characterization of monodispersed colloidal superparticles, which are important for applications such as biomedical diagnosis, biological separation, and light emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.