ASCs enhanced vertical bone regeneration in calvarial defects in rats with type 2 DM, when used in association with bovine bone scaffolds. The findings suggest that a combination of ASCs and bovine bone scaffolds could improve bone quantity in vertical bone defects.
Objective Bone tissue engineering was introduced in 1995 and provides a new way to reconstruct bone and repair bone defects. However, the design and fabrication of suitable bionic bone scaffolds are still challenging, and the ideal scaffolds in bone tissue engineering should have a three‐dimensional porous network, good biocompatibility, excellent biodegradability and so on. The purpose of our research was to investigate whether a bioplasticpoly3‐hydroxybutyrate4‐hydroxybutyrate (P34HB) electrospun fibre scaffold is conducive to the repair of bone defects, and whether it is a potential scaffold for bone tissue engineering. Materials and methods The P34HB electrospun fibre scaffolds were prepared by electrospinning technology, and the surface morphology, hydrophilicity, mechanical properties and cytological behaviour of the scaffolds were tested. Furthermore, a calvarial defect model was created in rats, and through layer‐by‐layer paper‐stacking technology, the P34HB electrospun fibre scaffolds were implanted into the calvarial defect area and their effect on bone repair was evaluated. Results The results showed that the P34HB electrospun fibre scaffolds are interwoven with several fibres and have good porosity, physical properties and chemical properties and can promote cell adhesion and proliferation with no cytotoxicity in vitro. In addition, the P34HB electrospun fibre scaffolds can promote the repair of calvarial defects in vivo. Conclusions These results demonstrated that the P34HB electrospun fibre scaffold has a three‐dimensional porous network with good biocompatibility, excellent biosafety and ability for bone regeneration and repair; thus, the P34HB electrospun fibre scaffold is a potential scaffold for bone tissue engineering.
Background. We conducted a bibliometrics analysis to explore the recent trends in dental implant research which could help researchers have a clear grasp of the relevant research hotspots and prospects. Material and Methods. Altogether, 15,770 articles on dental implants, from January 1, 2010, to October 31, 2019, were selected from the Web of Science Core Collection. We used BICOMB software to extract the high-frequency MeSH terms and construct binary and coword matrices. gCLUTO software was used for biclustering and visual analysis, Ucinet 6 software for social network analysis, SCIMAT software for strategic diagram building, Citespace 5.5 software to form timeline visualization, and VOSviewer software, eventually, for bibliometrics cocitation network. Results. Altogether, 72 high-frequency keywords were extracted from the selected articles and 4 clusters and 7 subcategories were identified through biclustering analysis in the dental implant research field. The use of the strategic diagram also enabled us to find the research hotspot and development trends. Conclusions. The survival rate of dental implants and subsequent restoration have always been the core focus of research. Sinus floor elevation and guided bone regeneration are worthy of constant exploration owing to their reliability. With continuous improvement in technology, immediate loading could become a future research hot spot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.