The shape of Diesel spray was investigated at real engine conditions in a constant pressure combustion chamber. Schlieren imaging technique was used to make quantitative measurements of spray tip penetration and radial width stressing the impact that the fuel combustion and heat release have on the spray shape. The heat-release region and the Lift-off length were identified measuring OH* chemiluminescence. The fuel (n-dodecane) as well as the operating conditions and the injector used (single axially oriented hole, 89 µm-diameter) were chosen following the indications by the Engine Combustion Network. The effects of different operating parameters on the axial and radial expansion were also investigated. According to the results the reacting spray can be divided into three parts: an inert part a transient part and a quasi-steady part that lays between the previous regions. A new method for evaluating this radial expansion of reacting spray was developed and the parameter was evaluated under the different operating conditions. The results show that the radial expansion increases with increasing injection pressure and decreasing ambient temperature and ambient density. The oxygen concentration has no obvious effect on the radial expansion. AbstractThe shape of Diesel spray was investigated at real engine conditions in a constant pressure combustion chamber. Schlieren imaging technique was used to make quantitative measurements of spray tip penetration and radial width stressing the impact that the fuel combustion and heat release have on the spray shape. The heat-release region and the Lift-off length were identified measuring OH* chemiluminescence. The fuel (n-dodecane) as well as the operating conditions and the injector used (single axially-oriented hole, 89 µm-diameter) were chosen following the guidelines of the Engine Combustion Network. The effects of different operating parameters on the axial and radial expansion were also investigated. According to the results the reacting spray can be divided into three parts: an inert part, a transient one, and a quasi-steady one that lays between the two other regions. A new method for evaluating this radial expansion of reacting spray was developed, which was evaluated under the different operating conditions. Results show that the radial expansion increases with increasing injection pressure and decreasing ambient temperature and ambient density. The oxygen concentration has no obvious effect on the radial expansion.Keywords: tip penetration; radial expansion; reacting spray; Schlieren imaging Highlights:Spatial evolution of the reacting spray can be divided into three parts.The radial contour of the reacting spray is the result of shifting the inert one by an approximately constant value The radial expansion increases with higher injection pressure and lower ambient gas temperature.The radius expansion decreases with higher ambient gas density.Oxygen concentration has no significant effect on the radial expansion.
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered
Even though studies on split-injection strategies have been published in recent years, there are still many remaining questions about how the first injection affects the mixing and combustion processes of the second one by changing the dwell time between both injection events or by the first injection quantity. In this article, split-injection diesel sprays with different injection strategies are investigated. Visualization of n-dodecane sprays was carried out under both non-reacting and reacting operating conditions in an optically accessible two-stroke engine equipped with a single-hole diesel injector. High-speed Schlieren imaging was applied to visualize the spray geometry development, while diffused background-illumination extinction imaging was applied to quantify the instantaneous soot production (net result of soot formation and oxidation). For non-reacting conditions, it was found that the vapor phase of second injection penetrates faster with a shorter dwell time and independently of the duration of the first injection. This could be explained in terms of one-dimensional spray model results, which provided information on the local mixing and momentum state within the flow. Under reacting conditions, interaction between the second injection and combustion recession of the first injection is observed, resulting in shorter ignition delay and lift-off compared to the first injection. However, soot production behaves differently with different injection strategies. The maximum instantaneous soot mass produced by the second injection increases with a shorter dwell time and with longer first injection duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.