For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.
A few-mode (FM) vertical cavity surface emitting laser (VCSEL) chip with heavily zinc-diffused contact layer and oxide-confined cross-section is demonstrated for carrying pre-leveled 16-quadrature amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM) data in OM4 multi-mode fiber (MMF) over 100 m for intra-data-center applications. The FM VCSEL chip, which has an oxide-confined emission aperture of 5 μm, demonstrates high external quantum efficiency, provides an optical power of 2.2 mW at 38 times threshold condition, and exhibits 3 dB direct-modulation bandwidth beyond 22 GHz at a cost of slight heat accumulation. At a DC bias point of 5 mA (22.6I th) the FM VCSEL chip, with sufficiently normalized modulation output, supports Baud and data rates of 25 and 100 Gb/s, respectively, with forward error correction (FEC) certifying receiving quality after back-to-back transmission. After passing through 100 m OM4 MMF with a receiving power penalty of 4 dB, the FM VCSEL chip demonstrates FEC-certified transmission of the pre-leveled 16-QAM OFDM data at 92 Gb/s.
An effective heat dissipation of uncooled 400-Gbps (16×25-Gbps) form-factor pluggable (CDFP) optical transceiver module employing chip-on-board multimode 25-Gbps vertical-surface-emitting-laser (VCSEL) and 25-Gbps photodiode (PD) arrays mounted on a brass metal core embedded within a printed circuit board (PCB) is proposed and demonstrated. This new scheme of the hollow PCB filling with thermally-dissipated brass metal core was simulated and used for high temperature and long term stability operation of the proposed 400-Gbps CDFP transceiver. During one-hour testing, a red-shift of central wavelength by 0.4-nm corresponding temperature increment of 6.7 °C was observed with the brass core assisted cooler module. Such a temperature change was significantly lower than that of 28.3 °C for the optical transceiver driven with conventional circuit board. After 100-m distance transmission over a multimode fiber (OM4), the 400-Gbps CDFP transceiver exhibited dispersion penalty of 2.6-dB, power budget of ≧ 3-dB, link loss of ≦ 0.63-dB, mask margin of 20%, and bit error rate (BER) of <10−12 with maintained stability more than one hour. The developed 400-Gbps CDFP transceiver module employing low-power consumption VCSEL and PD arrays, effective coupling lens arrays, and well thermal-dissipation brass metal core is suitable for use in the low-cost and high-performance data center applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.