Dispersal is central to the ecology and evolution of spatially structured communities. While flower microbial communities are spatially structured among floral organs, how dispersal vectors distribute microbes among floral organs is unknown. Pollinators are recognized as key microbial vectors, but effects of their different foraging behaviors on transfer dynamics among flowers or different floral organs are not known. We asked how foraging behaviors of a model pollinator (Bombus impatiens) affect acquisition and dispersal of microbes among flower organs. We used monkeyflowers (Mimulus guttatus) to examine dispersal within a natural context and artificial flowers to test how common bee foraging behaviors (nectaring, buzzing, or scrabbling) shaped dispersal of a green fluorescent protein‐labeled bacteria, Pseudomonas fluorescens. Bees acquired 1% of a flower's microbes and dispersed 31% of acquired microbes to the next flower. All bees acquired microbes, and 85% and 76% of bees dispersed microbes to live and artificial flowers, respectively. Microbes acquired from the corolla were mainly deposited on the corolla, followed by the stamens, and least on the nectary/pistil. Bee foraging behavior affected acquisition, with scrabbling for pollen resulting in 23% more microbes acquired than nectaring, and with buzzing for pollen resulting in a 79% slower rate of microbial acquisition relative to scrabbling. Bee foraging behavior also affected deposition but depended on the floral organ: Scrabbling and buzzing for pollen led to greater deposition than nectaring for corolla and stamen but not nectary. Our results have implications for transmission of beneficial and pathogenic microbes among plants and pollinators, and thus the ecology and evolution of floral microbial communities.
Many insects inhabiting temperate climates are faced with changing environmental conditions throughout the year. Depending on the species, these environmental fluctuations can be experienced within a single generation or across multiple generations. Strategies for dealing with these seasonal changes vary across populations. Drosophila mojavensis is a cactophilic Drosophila species endemic to the Sonoran Desert. The Sonoran Desert regularly reaches temperatures of 50°C in the summer months. As individuals of this population are rare to collect in the summer months, we therefore simulated in a temperature and light controlled chamber the cycling temperatures experienced by D. mojavensis in the Sonoran Desert from April to July (four generations) to understand the physiological and life history changes that allow this population to withstand these conditions. In contrast to our hypothesis of a summer aestivation, we found that D. mojavensis continue to reproduce during the summer months, albeit with lower viability, but the longevity of the population is highly reduced during this period. As expected, stress resistance increased during the summer months in both the adult and the larval stages. This study examines several strategies for withstanding the Sonoran Desert summer conditions which may be informative in the study of other desert endemic species.
Many insects inhabiting temperate climates are faced with changing environmental conditions throughout the year. Depending on the species, these environmental fluctuations can be experienced within a single generation or across multiple generations. Strategies for dealing with these seasonal changes vary across populations. Drosophila mojavensis is a cactophilic Drosophila species endemic to the Sonoran Desert. The Sonoran Desert regularly reaches temperatures of 50°C in the summer months. As individuals of this population are rare to collect in the summer months, we simulated the cycling temperatures experienced by D. mojavensis in the Sonoran Desert from April to July (four generations) in a temperature- and light-controlled chamber, to understand the physiological and life history changes that allow this population to withstand these conditions. In contrast to our hypothesis of a summer aestivation, we found that D. mojavensis continue to reproduce during the summer months, albeit with lower viability, but the adult survivorship of the population is highly reduced during this period. As expected, stress resistance increased during the summer months in both the adult and the larval stages. This study examines several strategies for withstanding the Sonoran Desert summer conditions which may be informative in the study of other desert endemic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.