The severe acute respiratory syndrome (SARS) has been one of the most epidemic diseases threatening human health all over the world. Based on clinical studies, SARSCoV (the SARS-associated coronavirus), a novel coronavirus, is reported as the pathogen responsible for the disease. To date, no e¡ective and speci¢c therapeutic method can be used to treat patients su¡ering from SARS-CoV infection. RNA interference (RNAi) is a process by which the introduced small interfering RNA (siRNA) could cause the degradation of mRNA with identical sequence speci¢city. The RNAi methodology has been used as a tool to silence genes in cultured cells and in animals. Recently, this technique was employed in anti-virus infections in human immunode¢ciency virus and hepatitis C/B virus. In this study, RNAi technology has been applied to explore the possibility for prevention of SARS-CoV infection. We constructed speci¢c siRNAs targeting the S gene in SARS-CoV. We demonstrated that the siRNAs could e¡ectively and speci¢cally inhibit gene expression of Spike protein in SARS-CoV-infected cells. Our study provided evidence that RNAi could be a tool for inhibition of SARS-CoV. ß 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Failures of fracture repair (non-unions) occur in 10% of all fractures. The use of mesenchymal stem cells (MSC) in tissue regeneration appears to be rationale, safe and feasible. The contributions of MSC to the reparative process can occur through autocrine as well as paracrine effects. The primary objective of this study is to find a novel mean, by transplanting primary cultures of bone marrow-derived MSC expressing insulin-like growth factor-I (MSCIGF), to promote these seed-and-soil actions of MSC to fully implement their regenerative abilities in fracture repair and non-unions. MSCIGF or traceable MSCIGF-Lac-Z were transplanted into wild-type or insulin-receptor-substrate knock-out (Irs1−/−) mice with a stabilized tibia fracture. Healing was assed using biomechanical testing, micro-computed-tomography (µCT) and histological analyses. We found that systemically transplanted MSCIGF through autocrine and paracrine actions improved the fracture mechanical strength and increased new bone content while accelerating mineralization. We determined that IGF-I adapted the response of transplanted MSCIGF to promote their differentiation into osteoblasts. In vitro and in vivo studies showed that IGF-I-induced induced osteoglastogenesis in MSC was dependent of an intact IRS1-PI3K signaling. Furthermore, using Irs1−/− mice as a non-union fracture model through altered IGF signaling, we demonstrated that the autocrine effect of IGF-I on MSC restored the fracture new bone formation and promoted the occurrence of a well-organized callus that bridged the gap; a callus that basically absent in Irs1−/− left untransplanted or transplanted with MSC. We provided evidence of effects and mechanisms for transplanted MSCIGF in fracture repair and potentially to treat non-unions.
Importance Mesenchymal stem cells have the ability to differentiate into osteoblasts, chondrocytes and adipocytes. Along with differentiation, MSCs can modulate inflammation, home to damaged tissues and secret bioactive molecules. These properties can be enhanced through genetic-modification that would combine the best of both cell and gene therapy fields to treat monogenic and multigenic diseases. Areas covered A review of the findings demonstrating the immunomodulation, homing and paracrine activities of MSCs followed by a summary of the current research utilizing MSCs as a vector for gene therapy, focusing on skeletal disorders, but also cardiovascular disease, ischemic damage and cancer. What the reader will gain MSCs are a possible therapeutic for many diseases, especially those related to the musculoskeletal system, as a standalone treatment, or in combination with factors that enhance the abilities of these cells to migrate, survive or promote healing through anti-inflammatory and immunomodulatory effects, differentiation, angiogenesis, delivery of cytolytic or anabolic agents. Take home message Genetically-modified MSCs are a promising area of research that would be improved by focusing on the biology of MSCs that could lead to identification of the natural and engrafting MSC-niche and a consensus on how to isolate and expand MSCs for therapeutic purposes.
Cartilage tissue engineering has arisen as a promising therapeutic option for degenerative joint diseases, such as osteoarthritis, in the hope of restoring the structure and physiological functions. Hydrogels are promising biomaterials for developing engineered constructs for cartilage regeneration. However, such cell-laden constructs could be exposed to elevated levels of reactive oxygen species (ROS) in the inflammatory microenvironment after being implanted into injured joints, which may affect their phenotype and normal functions and thereby hinder the regeneration efficacy. To attenuate ROS induced side effects, a multifunctional hydrogel with an innate anti-oxidative ability was produced in this study. The hydrogel was rapidly formed through a dynamic covalent bond between phenylboronic acid grafted hyaluronic acid (HA-PBA) and poly (vinyl alcohol) (PVA) and was further stabilized through a secondary crosslinking between the acrylate moiety on HA-PBA and the free thiol group from thiolated gelatin. The hydrogel is cyto-compatible and injectable and can be used as a bioink for 3D bioprinting. The viscoelastic properties of the hydrogels could be modulated through the hydrogel precursor concentration. The presence of dynamic covalent linkages contributed to its shear-thinning property and thus good printability of the hydrogel, resulting in the fabrication of a porous grid construct and a meniscus like scaffold at high structural fidelity. The bioprinted hydrogel promoted cell adhesion and chondrogenic differentiation of encapsulated rabbit adipose derived mesenchymal stem cells. Meanwhile, the hydrogel supported robust deposition of extracellular matrix components, including glycosaminoglycans and type II collagen, by embedded mouse chondrocytes in vitro. Most importantly, the hydrogel could protect encapsulated chondrocytes from ROS induced downregulation of cartilage-specific anabolic genes (ACAN and COL2) and upregulation of a catabolic gene (MMP13) after incubation with H2O2. Furthermore, intra-articular injection of the hydrogel in mice revealed adequate stability and good biocompatibility in vivo. These results demonstrate that this hydrogel can be used as a novel bioink for the generation of 3D bioprinted constructs with anti-ROS ability to potentially enhance cartilage tissue regeneration in a chronic inflammatory and elevated ROS microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.