Deregulation of pre-mRNA splicing is observed in many cancers and hematological malignancies. Genes encoding splicing factors are frequently mutated in myelodysplastic syndromes, in which SF3B1 mutations are the most frequent. SF3B1 is an essential component of the U2 small nuclear ribonucleoprotein particle that interacts with branch point sequences close to the 3’ splice site during pre-mRNA splicing. SF3B1 mutations mostly lead to substitutions at restricted sites in the highly conserved HEAT domain, causing a modification of its function. We found that SF3B1 was aberrantly spliced in various neoplasms carrying an SF3B1 mutation, by exploring publicly available RNA sequencing raw data. We aimed to characterize this novel SF3B1 transcript, which is expected to encode a protein with an insertion of eight amino acids in the H3 repeat of the HEAT domain. We investigated the splicing proficiency of this SF3B1 protein isoform, in association with the most frequent mutation (K700E), through functional complementation assays in two myeloid cell lines stably expressing distinct SF3B1 variants. The yeast Schizosaccharomyces pombe was also used as an alternative model. Insertion of these eight amino acids in wild-type or mutant SF3B1 (K700E) abolished SF3B1 essential function, highlighting the crucial role of the H3 repeat in the splicing function of SF3B1.
Myelodysplastic syndrome (MDS) is a hematological clonal stem cell disease. Recurrent splicing factors mutations are reported in 50% of MDS. Interestingly, mutations in the splicing factor gene SF3B1 are over-represented in MDS with ring sideroblasts (MDS-RS), co-occurring in up to 90% of patients. In MDS-RS, anemia is the major clinical manifestation. Erythropoiesis stimulating agents (ESAs) are used to treat anemia; however, the overall response rates are 20% to 40% with a duration of response of 18-24 months. New therapeutic options are needed to improve response to ESAs treatment and delay red blood cell transfusion, which are associated with acute myeloid leukemia progression and increase in morbidity. Mutations in SF3B1 modify the recognition pattern of the 3' splice site and lead to subsequent mis-splicing of its targets. To identify critical mis-splicing events involved in the erythroid differentiation blockage, we performed splicing analysis on RNA sequencing generated from hematopoietic stem/progenitor cells undergoing differentiation. Three MDS primary samples harboring SF3B1 mutations and three age-matched healthy donors cultured under normoxia and hypoxia conditions were initially used for the analysis. High depth RNA sequencing and differential splicing analyses using rMATS identified 2,845 mis-spliced events including 200 shared between hypoxia and normoxia conditions. Here, using a cohort of 42 MDS samples, we report the mis-splicing of the coenzyme A synthase (COASY) transcript. Heme synthesis relies on succinyl-CoA synthesis, and its production itself depends on the availability of cellular CoA. We thus hypothesised that COASY mis-splicing is a key driver of ineffective erythropoiesis in MDS-RS patients. In primary hematopoietic cells, COASY is upregulated during erythroid differentiation and its silencing in CD34 + cells severely impedes the generation of mature erythroid cells CD71 - CD235a + and causes disruption in heme production. Functional characterisations of the CRISPR-CAS9 edited K562 SF3B1K700E and the SF3B1-mutated HNT-34 cell lines confirmed that COASY mis-splicing impairs COASY protein synthesis that ultimately results in 60% loss of the protein. Metabolomic analysis showed that COASY mis-splicing depletes cells in CoA and succinyl-CoA metabolites, however this phenotype can be rescued by supplementation with vitamin B5, a CoA precursor. Consequently, we showed in vitro that saturating the 40% of remaining COASY enzyme with vitamin B5 or supplementing medium with its downstream by-product, succinyl-CoA, improved erythropoietic differentiation in MDS SF3B1mut patients. In summary, our results for the first time show that SF3B1 mutations induce coenzyme A synthase (COASY) transcript mis-splicing, that consequently leads to measurable defects in metabolites essential for heme biosynthesis. Our report reveals a novel critical role of COASY in regulating normal bone marrow erythropoiesis through control of succinyl-coA during human erythroid differentiation. Remarkably, partial loss of the coenzyme A synthase in MDS-RS patients leads to disruption in the erythroid lineage as well as heme deficiency, that can be rescued by exogenous treatment with vitamin B5 or succinyl-CoA. Therefore, vitamin B5 could represent a very attractive agent to combine with existing treatments in order to increase erythroid maturation and delay red blood cell transfusion dependency in MDS-RS patients. Graphical representation: SF3B1 mutant causes mis-splicing in COASY that results in loss of protein. Deficiency in COASY triggers a downregulation of succinyl-CoA that is involved in the rate limiting step of heme synthesis. Heme deficiency subsequently impairs erythroid differentiation. Treatment of MDS SF3B1 mutant cells with vitamin B5 (precursor of CoA), or succinyl-CoA, rescues erythroid differentiation. Figure 1 Figure 1. Disclosures Platzbecker: Geron: Honoraria; Takeda: Honoraria; Janssen: Honoraria; Celgene/BMS: Honoraria; Novartis: Honoraria; AbbVie: Honoraria. Wiseman: Bristol Myers Squibb: Consultancy; Novartis: Consultancy; StemLine: Consultancy; Takeda: Consultancy; Astex: Research Funding. Gribben: Abbvie: Honoraria; AZ: Honoraria, Research Funding; BMS: Honoraria; Gilead/Kite: Honoraria; Janssen: Honoraria, Research Funding; Morphosys: Honoraria; Novartis: Honoraria; Takeda: Honoraria; TG Therapeutis: Honoraria.
Patients with myelodysplastic syndrome and ring sideroblasts (MDS-RS) present with symptomatic anemia due to ineffective erythropoiesis that impedes their quality of life and increases morbidity. More than 80% of patients with MDS-RS harbor splicing factor 3B subunit 1 (SF3B1) mutations, the founder aberration driving MDS-RS disease. Here, we report how mis-splicing of coenzyme A synthase ( COASY ), induced by mutations in SF3B1 , affects heme biosynthesis and erythropoiesis. Our data revealed that COASY was up-regulated during normal erythroid differentiation, and its silencing prevented the formation of erythroid colonies, impeded erythroid differentiation, and precluded heme accumulation. In patients with MDS-RS, loss of protein due to COASY mis-splicing led to depletion of both CoA and succinyl-CoA. Supplementation with COASY substrate (vitamin B5) rescued CoA and succinyl-CoA concentrations in SF3B1 mut cells and mended erythropoiesis differentiation defects in MDS-RS primary patient cells. Our findings reveal a key role of the COASY pathway in erythroid maturation and identify upstream and downstream metabolites of COASY as a potential treatment for anemia in patients with MDS-RS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.