Each year, blood transfusions save millions of lives. However, under current blood-matching practices, sensitization to non–self-antigens is an unavoidable adverse side effect of transfusion. We describe a universal donor typing platform that could be adopted by blood services worldwide to facilitate a universal extended blood-matching policy and reduce sensitization rates. This DNA-based test is capable of simultaneously typing most clinically relevant red blood cell (RBC), human platelet (HPA), and human leukocyte (HLA) antigens. Validation was performed, using samples from 7927 European, 27 South Asian, 21 East Asian, and 9 African blood donors enrolled in 2 national biobanks. We illustrated the usefulness of the platform by analyzing antibody data from patients sensitized with multiple RBC alloantibodies. Genotyping results demonstrated concordance of 99.91%, 99.97%, and 99.03% with RBC, HPA, and HLA clinically validated typing results in 89 371, 3016, and 9289 comparisons, respectively. Genotyping increased the total number of antigen typing results available from 110 980 to >1 200 000. Dense donor typing allowed identification of 2 to 6 times more compatible donors to serve 3146 patients with multiple RBC alloantibodies, providing at least 1 match for 176 individuals for whom previously no blood could be found among the same donors. This genotyping technology is already being used to type thousands of donors taking part in national genotyping studies. Extraction of dense antigen-typing data from these cohorts provides blood supply organizations with the opportunity to implement a policy of genomics-based precision matching of blood.
Background and Objectives More insight into donor health and behaviour may contribute to more efficient and focused strategies regarding donor care and management. Donor InSight (DIS) is a Dutch cohort study of blood and plasma donors. We aimed to outline the objectives and methods of DIS, describe the cohort, and compare it to the active Dutch donor population. Materials and Methods In 2007‐2009 (DIS‐I, n = 31 338) and 2012‐2013 (DIS‐II, 34 826, of whom 22 132 also participated in DIS‐I) questionnaire data on demographics, donation, lifestyle, family composition, health and disease were collected. A second follow‐up (DIS‐III, n = 3046), including donors with differing haemoglobin trajectories, was completed in 2015‐2016. DIS‐III includes data on genetic determinants, iron and red cell indices. Representativeness of the DIS‐I sample for the entire Dutch donor population was assessed by comparing characteristics of both. Results Donor InSight was initially set up because of a need for more detailed information and evidence as a basis for decision‐making in blood banks. DIS‐I sample is comparable to the total Dutch donor population in terms of age, body mass index, haemoglobin level, blood pressure, blood type and donation behaviour. Conclusion Donor InSight is a cohort study representative of the Dutch donor population. It provides evidence to support evidence‐based decision making.
Whole blood donors, especially frequently donating donors, have a risk of iron deficiency and low hemoglobin levels, which may affect their health and eligibility to donate. Lifestyle behaviors, such as dietary iron intake and physical activity, may influence iron stores and thereby hemoglobin levels. We aimed to investigate whether dietary iron intake and questionnaire-based moderate-to-vigorous physical activity were associated with hemoglobin levels, and whether ferritin levels mediated these associations. In Donor InSight-III, a Dutch cohort study of blood and plasma donors, data on heme and non-heme iron intake (mg/day), moderate-to-vigorous physical activity (10 minutes/day), hemoglobin levels (mmol/L) and ferritin levels (μg/L) were available in 2,323 donors (1,074 male). Donors with higher heme iron intakes (regression coefficients (β) in men and women: 0.160 and 0.065 mmol/L higher hemoglobin per 1 mg of heme iron, respectively) and lower non-heme iron intakes (β: -0.014 and -0.017, respectively) had higher hemoglobin levels, adjusted for relevant confounders. Ferritin levels mediated these associations (indirect effect (95% confidence interval) in men and women respectively: 0.074 (0.045; 0.111) and 0.061 (0.030; 0.096) for heme and -0.003 (-0.008;0.001) and -0.008 (-0.013;-0.003) for non-heme). Moderate-to-vigorous physical activity was negatively associated with hemoglobin levels in men only (β: -0.005), but not mediated by ferritin levels. In conclusion, higher heme and lower non-heme iron intake were associated with higher hemoglobin levels in donors, via higher ferritin levels. This indicates that donors with high heme iron intake may be more capable of maintaining iron stores to recover hemoglobin levels after blood donation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.