A dipodal bis-urea receptor has been synthesized from the reaction of 8-amino quinoline and 1,4-phenylene diisocyanate in dichloromethane, and the anion binding ability of the receptor has been studied using fluoride, chloride, bromide, iodide, perchlorate, nitrate, dihydrogen phosphate and hydrogen sulfate by UV-Vis titrations in DMSO. The results show that the receptor binds each of the anions with a 1:1 stoichiometry, showing high affinity, and moderate selectivity for hydrogen sulfate among the anions studied. Ab initio calculations based on density functional theory (DFT) suggest that an anion (X−) is bonded within the cleft formed by the two arms of the receptor through two NH…X− and two aromatic CH…X− interactions. The results from solution and theoretical studies suggest that binding is predominately influenced by hydrogen bonding interactions and the basicity of anions.
The title compound, C33H26N6O2, contains two 3-(quinolin-8-yl)urea groups linked to a diphenylmethane. The asymmetric unit contains two molecules, A and B. Each quinoline plane is essentially parallel to the attached urea unit [dihedral angles = 8.97 (18) and 8.81 (19) in molecule A and 18.47 (18) and 4.09 (19)° in molecule B]. The two benzene rings are twisted, making dihedral angles of 81.36 (8)° in A and 87.20 (9)° in B. The molecular structures are stabilized by intramolecular N—H⋯N hydrogen bonds. In the crystal, each urea O atom is involved in two N—H⋯O hydrogen bonds, generating two interpenetrating three-dimensional sets of molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.