The cysteine protease caspase-1 (Casp-1) contributes to innate immunity through the assembly of NLRP3, NLRC4, AIM2, and NLRP6 inflammasomes. Here we ask whether caspase-1 activation plays a regulatory role in house dust mite (HDM)-induced experimental allergic airway inflammation. We report enhanced airway inflammation in caspase-1-deficient mice exposed to HDM with a marked eosinophil recruitment, increased expression of IL-4, IL-5, IL-13, as well as full-length and bioactive IL-33. Furthermore, mice deficient for NLRP3 failed to control eosinophil influx in the airways and displayed augmented Th2 cytokine and chemokine levels, suggesting that the NLPR3 inflammasome complex controls HDM-induced inflammation. IL-33 neutralization by administration of soluble ST2 receptor inhibited the enhanced allergic inflammation, while administration of recombinant IL-33 during challenge phase enhanced allergic inflammation in caspase-1-deficient mice. Therefore, we show that caspase-1, NLRP3, and ASC, but not NLRC4, contribute to the upregulation of allergic lung inflammation. Moreover, we cannot exclude an effect of caspase-11, because caspase-1-deficient mice are deficient for both caspases. Mechanistically, absence of caspase-1 is associated with increased expression of IL-33, uric acid, and spleen tyrosine kinase (Syk) production. This study highlights a critical role of caspase-1 activation and NLPR3/ASC inflammasome complex in the down-modulation of IL-33 in vivo and in vitro, thereby regulating Th2 response in HDM-induced allergic lung inflammation.
T helper (Th)17 immune response participates in allergic lung inflammation and asthma is reduced in the absence of interleukin (IL)-17 in mice. Since IL-17A and IL-17F are induced and bind the shared receptor IL-17RA, we asked whether both IL-17A and IL-17F contribute to house dust mite (HDM) induced asthma. We report that allergic lung inflammation is attenuated in absence of either IL-17A or IL-17F with reduced airway hyperreactivity, eosinophilic inflammation, goblet cell hyperplasia, cytokine and chemokine production as found in absence of IL-17RA. Furthermore, specific antibody neutralization of either IL-17A or IL-17F given during the sensitization phase attenuated allergic lung inflammation and airway hyperreactivity. activation by HDM of primary dendritic cells revealed a comparable induction of CXCL1 and IL-6 expression and the response to IL-17A and IL-17F relied on IL-17RA signaling via the adaptor protein act1 in fibroblasts. Therefore, HDM-induced allergic respiratory response depends on IL-17RA via act1 signaling and inactivation of either IL-17A or IL-17F is sufficient to attenuate allergic asthma in mice.
Cystic fibrosis is associated with increased inflammatory responses to pathogen challenge. Here we revisited the role of IL-1β in lung pathology using the experimental F508del-CFTR murine model on C57BL/6 genetic background (Cftr tm1eur or d/d), on double deficient for d/d and type 1 interleukin-1 receptor (d/d X IL-1R1−/−), and antibody neutralization. At steady state, young adult d/d mice did not show any signs of spontaneous lung inflammation. However, IL-1R1 deficiency conferred partial protection to repeated P. aeruginosa endotoxins/LPS lung instillation in d/d mice, as 50% of d/d mice succumbed to inflammation, whereas all d/d x IL-1R1−/− double mutants survived with lower initial weight loss and less pulmonary collagen and mucus production, suggesting that the absence of IL-1R1 signaling is protective in d/d mice in LPS-induced lung damage. Using P. aeruginosa acute lung infection we found heightened neutrophil recruitment in d/d mice with higher epithelial damage, increased bacterial load in BALF, and augmented IL-1β and TNF-α in parenchyma as compared to WT mice. Thus, F508del-CFTR mice show enhanced IL-1β signaling in response to P. aeruginosa. IL-1β antibody neutralization had no effect on lung homeostasis in either d/d or WT mice, however P. aeruginosa induced lung inflammation and bacterial load were diminished by IL-1β antibody neutralization. In conclusion, enhanced susceptibility to P. aeruginosa in d/d mice correlates with an excessive inflammation and with increased IL-1β production and reduced bacterial clearance. Further, we show that neutralization of IL-1β in d/d mice through the double mutation d/d x IL-1R1−/− and in WT via antibody neutralization attenuates inflammation. This supports the notion that intervention in the IL-1R1/IL-1β pathway may be detrimental in CF patients.
Therefore our findings identify PKC-θ as a critical factor for ILC2 activation that contributes to T2 cell differentiation, which is associated with IRF4 and NFAT1 expression in allergic lung inflammation.
Background. Thymic stromal lymphopoietin (TSLP) is induced in allergic skin and lung inflammation in man and mice. Methods. Allergic lung inflammation induced by two proteases allergens HDM and papain and a classical allergen ovalbumin was evaluated in vivo in mice deficient for TSLPR. Eosinophil recruitment, Th2 and Th17 cytokine and chemokine levels were determined in bronchoalveolar lavage fluid, lung homogenates and lung mononuclear cells ex vivo. Results. Here we report that mice challenged with house dust mite extract or papain in the absence of TSLPR have a drastic reduction of allergic inflammation with diminished eosinophil recruitment in BAL and lung and reduced mucus overproduction. TSLPR deficient DCs displayed diminished OVA antigen uptake and reduced capacity to activate antigen specific T cells. TSLPR deficient mice had diminished proinflammatory IL-1β, IL-13, and IL-33 chemokines production, while IL-17A, IL-12p40 and IL-10 were increased. Together with impaired Th2 cytokines, IL-17A expressing TCRβ + T cells were increased, while IL-22 expressing CD4+ T cells were diminished in the lung. Conclusion. Therefore, TSLPR signaling is required for the development of both Th2 and Th22 responses and may restrain IL-17A. TSLP may mediate its effects in part by increasing allergen uptake and processing by DCs resulting in an exacerbated asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.