Rare‐earth elements (REEs) are crucial to modern technology, leading to a high demand for materials capable of REE extraction and purification. Metal‐chelating polymers (e.g., polycarboxylic acids, polyamines, and others) are particularly useful in these applications due to their synthetic accessibility and high selectivity. Copolymers with varied mole fractions of acrylic acid and methyl acrylate are synthesized and isothermal titration calorimetry (ITC) to measure the thermodynamics of REE binding for each material is used. Across a series of copolymer compositions, entropically driven binding thermodynamics (∆G, ∆H, and ∆S) that appear to be independent of χAcrylic Acid are found. ITC stoichiometry data reveal that each copolymer requires between four and five repeat units to bind each REE. These data suggest that alterations in the copolymer structure do not affect the overall binding thermodynamics of REEs to these copolymers.
Toxic contaminates have profound consequences on both health and the environment. Consequently, effective approaches for addressing the effects of these toxicants are paramount. Here, we review recent progress in developing polymeric sequestrants for biological toxins, heavy metals and organic micropollutants. Polymers have several advantages as sequestration materials, including relatively low cost and high affinity for target compounds. As a result a number of polymer-based toxin-mitigation applications have been investigated. Naturally occurring toxins may be neutralized with polymers capable of binding and eliminating them from the body. Heavy metal contamination from mining operations, energy and industrial sources may also be mitigated with appropriate chelating polymers, both for environmental remediation and in chelation therapy for metal poisoning. Micropollutants such as pesticides from agriculture and polycyclic aromatic hydrocarbons from combustion processes may also be isolated using polymeric materials. Each of these applications illustrates the capabilities of polymers for eliminating toxic contaminants, thereby facilitating greater health and sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.