Photovoltaic (PV) systems are an excellent solution to meet energy demand and protect the global environment in many cases. With the increasing utilization of the PV system worldwide, there is an increasing need for simulation tools to predict the PV system’s performance and profitability. This research includes testing and comparison of PV tools: photovoltaic geographical information system (PVGIS), PVWatts, SolarGIS, RETScreen, BlueSol, PVsyst, HelioScope, PV*SOL, Solarius PV, Solar Pro, PV F-Chart, PolySun, solar advisor model (SAM), and hybrid optimization model for electric renewables (HOMER), based on experimental data obtained from fixed on-grid 2 kWp PV system in 2019. The PV system is part of a research project related to the examination of the PV system operation in real climatic conditions in Niš. This research investigates the most appropriate PV software for PV systems design by testing the most commonly used PV tools. It was accomplished by comparing experimental data obtained by a 2 kWp PV system in Niš and estimated data obtained from different PV tools. The study shows that annually, the experimentally measured average daily solar irradiation on the inclined plane was 5,270 Wh/m2/day, and the lowest deviation of the simulation results compared to experimental measurements was obtained by SolarPro. Total annual electricity production from the given system was 2455.621 kW h, and the lowest deviation of the simulation results compared to experimental measurements was obtained by PVGIS. By analyzing and publishing the actual solar irradiation and PV power output data, this study could help researchers to increase the PV systems modeling accuracy.
The modification of an important transition's factor which enables continual behavior of the surface potential in entire useful range of MOSFET operation is presented. The various modifications have been made in order to obtain an accurate and computationally efficient compact MOSFET model. The best results have been achieved by introducing the generalized logistic function (GL) in fitting of considered factor. The smoothness and speed of the transition of the surface potential from the depletion to the strong inversion region can be controlled in this way. The results of the explicit model with this GL functional form for transition's factor have been verified extensively with the numerical data. A great agreement was found for a wide range of substrate doping and oxide thickness. Moreover, the proposed approach can be also applied on the case where quantum mechanical effects play important role in inversion mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.