Understanding how rivers respond to changes in land cover, climate, and subsurface conditions is critical for sustainably managing water resources and ecosystems. In this study, long-term hydrologic, climate, and satellite data from the Upper Tahe River watershed (2359 km 2 ) in the Da Hinggan Mountains of northeast China were analysed to quantify the relative hydrologic effects of climate variability (system input) and the combined influences of forest cover change and permafrost thaw (system characteristics) on average annual streamflow (system response) using 2 methods: the sensitivity-based method and the Kendall-Theil robust line method. The study period was subdivided into a forest harvesting period (1973)(1974)(1975)(1976)(1977)(1978)(1979)(1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987), a forest stability period (1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001), and a forest recovery period (2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012). The results indicated that the combined effects of forest harvesting and permafrost thaw on streamflow (+ 47.0 mm) from the forest harvesting period to the forest stability period was approximately twice as large as the effect associated with climate variability (+20.2 mm). Similarly, from the forest stability period to the forest recovery period, the decrease in average annual streamflow attributed to the combined effects of forest recovery and permafrost thaw (−38.0 mm) was much greater than the decrease due to climate variability (−22.2 mm). A simple method was used to separate the distinct impacts of forest cover change and permafrost thaw, but distinguishing these influences is difficult due to changes in surface and subsurface hydrologic connectivity associated with permafrost thaw. The results highlight the need to consider multiple streamflow drivers in future watershed and aquatic ecosystem management. Due to the ecological and hydrological susceptibility to disturbances in the Da Hinggan Mountains, forest harvesting will likely negatively impact ecohydrological processes in this region, and the effects of forest species transition in the forest recovery process should be further investigated.
Abstract:Rapid permafrost thaw and precipitation regime shifts are altering surface and subsurface hydrological processes in arctic and subarctic watersheds. Long-term data (40 years) from two large permafrost watersheds in northeastern China, the Tahe River and Duobukuer River watersheds, indicate that winter baseflows are characterized by significant positive trends of 1.7% and 2.5%·year −1 , respectively. Winter baseflows exhibited statistically significant positive correlations with mean annual air temperature and the thawing index, an indicator of permafrost degradation, for both watersheds, as well as the increasing annual rainfall fraction of precipitation for the Duobukuer River watershed. Winter baseflows were characterized by a breakpoint in 1989, which lagged behind the mean annual air temperature breakpoint by only two years. The statistical analyses suggest that the increases in winter baseflow are likely related to enhanced groundwater storage and winter groundwater discharge caused by permafrost thaw and are potentially also due to an increase in the wet season rainfall. These hydrological trends are first apparent in marginal areas of permafrost distribution and are expected to shift northward towards formerly continuous permafrost regions in the context of future climate warming.
Abstract:The hydrological effect of forest recovery is receiving renewed interest globally because information on forest carbon-water relationship is critically needed to support carbon management through reforestation and sustainable water management. In Northeastern China, summer (June to August) streamflow accounts for about 50% of total annual streamflow and is vital to water supply and management in the region. Understanding how forest recovery may affect streamflow is important to both reforestation campaign and long-term water sustainability. In this study, we analysed 33 years of summer hydrologic data from two comparable small-scale watersheds located in the Xiaoxing'anling, Northeastern China. Time series analysis and two graphic methods (double mass curve and flow duration curve) with statistical testing as well as longterm data on forest cover changes and climate were used. Our results show that the significant streamflow reduction as a result of reforestation occurred when forest cover reached 70% or 10 years after planting. After forest cover reached 85%, water reduction became stabilized. The accumulative streamflow reduction in 2002 reached 8Ð61% of the total accumulative streamflow. Among those water reduced, high flows (from 5 to 25 percentiles) were mostly affected, demonstrating that northeastern forests have an important role in reducing high flows. Implications of these results are discussed in the context of climate change, reforestation and water resource management.
This paper evaluates the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating annual and decadal temperature in the Mekong River Basin from 1950 to 2005. By use of Bayesian multi-model averaging method, the future projection of temperature variation under different scenarios are also analyzed. The results show, the performances of climate model are more accurate in space than time, the model can catch the warming characteristics in the Mekong river Basin, but the accuracy of simulation is not good enough. Bayesian multi-model averaging method can improve the annual and decadal temperature simulation when compared to a single result. The projected temperature in Mekong River will increase by 0.88 °C/100 year, 2.15 °C/100 year and 4.96 °C/100 year for the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, over the twenty-first century. The findings will be beneficial for local people and policy-maker to formulate regional strategies against the potential menaces of warming scenarios.
Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.