Although the protein synthesis inhibitor cycloheximide (CHX) has been known for decades, its precise mechanism of action remains incompletely understood. The glutarimide portion of CHX is seen in a family of structurally related natural products including migrastatin, isomigrastatin and lactimidomycin (LTM). LTM, isomigrastatin and analogs were found to have a potent antiproliferative effect on tumor cell lines and selectively inhibit protein translation. A systematic comparative study of the effects of CHX and LTM on protein translation revealed both similarities and differences between the two inhibitors. Both LTM and CHX were found to block the translocation step in elongation. Footprinting experiments revealed protection of a single cytidine nucleotide (C3993) in the E-site of the 60S ribosomal subunit, defining a common binding pocket for both inhibitors in the ribosome. These results shed new light on the molecular mechanism of inhibition of translation elongation by both CHX and LTM.
Translation initiation in eukaryotes is accomplished through the coordinated and orderly action of a large number of proteins, including the eIF4 initiation factors. Herein, we report that pateamine A (PatA), a potent antiproliferative and proapoptotic marine natural product, inhibits cap-dependent eukaryotic translation initiation. PatA bound to and enhanced the intrinsic enzymatic activities of eIF4A, yet it inhibited eIF4A-eIF4G association and promoted the formation of a stable ternary complex between eIF4A and eIF4B. These changes in eIF4A affinity for its partner proteins upon binding to PatA caused the stalling of initiation complexes on mRNA in vitro and induced stress granule formation in vivo. These results suggest that PatA will be a valuable molecular probe for future studies of eukaryotic translation initiation and may serve as a lead compound for the development of anticancer agents.
Highlights d Disome profiling reveals widespread ribosome collisions in vertebrates d Ribosomes are in queues at Pro-Pro/Gly/Asp, Arg-X-Lys, stop codons, and 3 0 UTRs d The positively charged nascent chain weakens the eIF5Amediated rescue of disomes d The stalled disomes on XBP1u mRNA are an endogenous substrate of RQC
The human CRSP-Med coactivator complex is targeted by a diverse array of sequence-specific regulatory proteins. Using EM and single-particle reconstruction techniques, we recently completed a structural analysis of CRSP-Med bound to VP16 and SREBP-1a. Notably, these activators induced distinct conformational states upon binding the coactivator. Ostensibly, these different conformational states result from VP16 and SREBP-1a targeting distinct subunits in the CRSP-Med complex. To test this, we conducted a structural analysis of CRSP-Med bound to either thyroid hormone receptor (TR) or vitamin D receptor (VDR), both of which interact with the same subunit (Med220) of CRSP-Med. Structural comparison of TR- and VDR-bound complexes (at a resolution of 29 A) indeed reveals a shared conformational feature that is distinct from other known CRSP- Med structures. Importantly, this nuclear receptor-induced structural shift seems largely dependent on the movement of Med220 within the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.