N6-methyladenosine (m6A), a major modification of messenger RNAs (mRNAs), plays critical roles in RNA metabolism and function. In addition to the internal m6A, N6, 2′-O-dimethyladenosine (m6Am) is present at the transcription start nucleotide of capped mRNAs in vertebrates. However, its biogenesis and functional role remain elusive. Using a reverse genetics approach, we identified PCIF1, a factor that interacts with the serine-5–phosphorylated carboxyl-terminal domain of RNA polymerase II, as a cap-specific adenosine methyltransferase (CAPAM) responsible for N6-methylation of m6Am. The crystal structure of CAPAM in complex with substrates revealed the molecular basis of cap-specific m6A formation. A transcriptome-wide analysis revealed that N6-methylation of m6Am promotes the translation of capped mRNAs. Thus, a cap-specific m6A writer promotes translation of mRNAs starting from m6Am.
Highlights d Crystallographic structure of the human eIF4A1,AMPPNP,RocA,polypurine RNA complex d Direct base recognition by RocA induces polypurine RNA selectivity on eIF4A1 d Natural amino acid substitutions found in Aglaia eIF4As provide self-resistance to RocA
Highlights d Disome profiling reveals widespread ribosome collisions in vertebrates d Ribosomes are in queues at Pro-Pro/Gly/Asp, Arg-X-Lys, stop codons, and 3 0 UTRs d The positively charged nascent chain weakens the eIF5Amediated rescue of disomes d The stalled disomes on XBP1u mRNA are an endogenous substrate of RQC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.