Abstract. The quality of estimation of tail parameters, such as tail index in the univariate case, or the spectral measure in the multivariate case, depends crucially on the part of the sample included in the estimation. A simple approach involving sequential statistical testing is proposed in order to choose this part of the sample. This method can be used both in the univariate and multivariate cases. It is computationally efficient, and can be easily automated. No visual inspection of the data is required. We establish consistency of the Hill estimator when used in conjunction with the proposed method, as well describe its asymptotic fluctuations. We compare our method to existing methods in univariate and multivariate tail estimation, and use it to analyze Danish fire insurance data.
The quality of estimation of multivariate tails depends significantly on the portion of the sample included in the estimation. A simple approach involving sequential statistical testing is proposed in order to select which observations should be used for estimation of the tail and spectral measures. We prove that the estimator is consistent. We test the proposed method on simulated data, and subsequently apply it to analyze CoVaR for stock and index returns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.