Despite the use of first-choice anti-epileptic drugs and satisfactory seizure outcome rates after resective epilepsy surgery, a considerable percentage of patients do not become seizure free. ANT-DBS may provide for an alternative treatment option in these patients. This literature review discusses the rationale, mechanism of action, clinical efficacy, safety, and tolerability of ANT-DBS in drug-resistant epilepsy patients. A review using systematic methods of the available literature was performed using relevant databases including Medline, Embase, and the Cochrane Library pertaining to the different aspects ANT-DBS. ANT-DBS for drug-resistant epilepsy is a safe, effective and well-tolerated therapy, where a special emphasis must be given to monitoring and neuropsychological assessment of both depression and memory function. Three patterns of seizure control by ANT-DBS are recognized, of which a delayed stimulation effect may account for an improved long-term response rate. ANT-DBS remotely modulates neuronal network excitability through overriding pathological electrical activity, decrease neuronal cell loss, through immune response inhibition or modulation of neuronal energy metabolism. ANT-DBS is an efficacious treatment modality, even when curative procedures or lesser invasive neuromodulative techniques failed. When compared to VNS, ANT-DBS shows slightly superior treatment response, which urges for direct comparative trials. Based on the available evidence ANT-DBS and VNS therapies are currently both superior compared to non-invasive neuromodulation techniques such as t-VNS and rTMS. Additional in-vivo research is necessary in order to gain more insight into the mechanism of action of ANT-DBS in localization-related epilepsy which will allow for treatment optimization. Randomized clinical studies in search of the optimal target in well-defined epilepsy patient populations, will ultimately allow for optimal patient stratification when applying DBS for drug-resistant patients with epilepsy.
The human complement system is represents the main effector arm of innate immunity and its ambivalent function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the influence of the complement system on the maintenance of these cells. It appears that the role of the complement system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and warrants further exploration for therapeutic interventions.
Introduction
Obsessive‐compulsive disorder (OCD) is among the most disabling chronic psychiatric disorders and has a significant negative impact on multiple domains of quality of life. Deep brain stimulation (DBS) is a treatment option for severe therapy‐resistant OCD.
Objective
To provide a detailed clinical description and treatment outcome analysis in a cohort of eight refractory OCD patients receiving ventral capsule/ventral striatum (VC/VS) stimulation with the intention to validate discriminating fiber bundles previously associated with clinical response.
Materials and Methods
The primary outcome measure (the Yale‐Brown Obsessive Compulsive Scale [Y‐BOCS]) and secondary outcomes depressive symptoms, anxiety, and quality of life were retrospectively analyzed. DBS leads were warped into standard stereotactic space. A normative connectome was used to identify the neural network associated with clinical outcome.
Results
With a median stimulation duration of 26 months, patients exhibited a mean Y‐BOCS reduction of 10.5 resulting in a response rate of 63%. Modulation of a fiber bundle traversing the anterior limb of the internal capsule (ALIC) was associated with Y‐BOCS reduction. This fiber bundle connected the frontal regions to the subthalamic nucleus (STN) and was functionally identified as the hyperdirect pathway of the basal ganglia circuitry.
Conclusion
Our findings show that in VC/VS stimulation, the neural network associated with clinical outcome shows overlap with that of previously described for other targets namely the anterior limb of the internal capsula, the nucleus accumbens, or the STN, which supports the evolvement from the concept of an optimal gray matter target to conceiving the target as part of a symptom modulating network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.