Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5–33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25–200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material.
Multi-decadal ocean time-series are fundamental baselines for assessing the impacts of environmental change, however, compiling and quality controlling historic data from multiple sources remains challenging. Here we aggregate, document, and release a number of long time-series temperature products and climatologies compiled from data obtained at 4 monitoring sites around Australia where sub-surface ocean temperature has been recorded nominally weekly to monthly since the 1940s/50s. In recent years, the sampling was augmented with data obtained from moored sensors, vertical profiles and satellite-derived data. The temperature data have been quality controlled, and combined using a rigorously tested methodology. We have packaged the multi-decadal, multi-depth, multi-platform temperature time-series at each site and produced a range of daily temperature climatologies from different data combinations and time periods. The 17 data products are provided as CF-compliant NetCDF files and will be updated periodically. The long-term temperature time-series will be useful for studies of ocean temperature variability, trends, anomalies and change. The data collection is supported by Australia’s Integrated Marine Observing System and data are open-access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.