The effects of pressure, temperature, and treatment time on the degree of gelatinization were determined with differential scanning calorimetry measurements for wheat starch-water mixtures with starch concentrations varying between 5 and 80 w/w %. Although simple models could be used to describe the degree of starch gelatinization as a function of pressure or temperature, a more complex model based on the Gibbs energy difference had to be used to describe the degree of gelatinization as a function of both pressure and temperature. The experimental and model data were used to construct a phase diagram for 5, 30, and 60 w/w % wheat starch-water mixtures. Data obtained from literature were in accordance with our phase diagrams. These phase diagrams can be used to estimate the degree of gelatinisation after applying a certain pressure and temperature on a starch-water mixture with starch concentrations in the range of 5 and 60 w/w %.
Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.