The authors report on highly efficient organic light emitting diodes (OLEDs) consisting of only two organic layers. The key to the simplification is the direct injection of holes into the wide band gap hole transport material 4,4′,4″-tris(N-carbazolyl)-triphenyl amine (highest occupied molecular orbital is 5.9eV) through an indium tin oxide/tungsten oxide (WO3) anode. Kelvin probe analysis has revealed an extremely high work function of 6.4eV for WO3. The efficiencies of the simplified OLEDs exceed 40lm∕W and 45cd∕A at a brightness of 100cd∕m2, unsurpassed by other comparably simple OLED devices. Therefore, our OLED architecture demonstrates highly efficient, yet easy to fabricate devices.
We reported on highly efficient semitransparent polymer solar cells comprising a transparent sputtered indium tin oxide (ITO) top electrode. We used an inverted cell structure with titanium dioxide prepared by atomic layer deposition as electron selective layer and molybdenum oxide (MoO3) as hole extraction layer. Moreover, the MoO3 layer prevents damage to the organic active materials due to the ITO sputtering process. For the semitransparent device, power conversion efficiencies of 1.9% were achieved with a high transmittance of 80% in the red region of the visible spectrum.
A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO
x
) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO
x
, and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO
x
layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO
x
and 125-nm PP, a WVTR of 1.2 × 10 −3 gm−2d−1 at 60℃ and 90% relative humidity could be observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.