The control over structure and function in hierarchically multidimensional materials based on hollow spheres, nanowires, nanorods, nanotubes, fibres, membranes or inverse opals with adjustable dimensions has gained considerable attention due to their tremendous potential for a wide variety of applications. Herein we describe convenient and efficient synthetic concepts for synthesis and processing of welldefined polymer-templated inorganic materials with 0D, 1D, 2D and 3D nano-and microstructures. In the first step, we describe universal methodologies for the controlled build-up of polymer-templated non-functional inorganic structures by taking advantage of lower dimensional structures such as coreshell particles or fibres. With this approach it is possible to obtain more sophisticated architectures such as 3D ordered macroporous (3DOM) materials after applying different procedures for organization, e.g. the powerful melt shear technique as well as novel double-templating strategies towards multidimensional carbon architectures. To prove the feasibility of our protocols established herein we have exemplarily applied these methods to the formation of functional inorganic high-temperature materials, such as silicon carbide (b-SiC) and yttria-stabilized zirconia (YSZ). The general pathways for the controlled build-up of nano-and micro-scaled structures based on polymer templates may thus provide a facile and versatile route to an even wider variety of organic/inorganic composite materials offering a wider range of future applications in the fields of catalysis, separation, sensors, optics, and biomedicine. Herein we show first examples of selected new material morphologies towards energy related issues, namely Li-ion battery applications and heterogeneous catalysis (selective ethanol oxidation).
Molybdenum(vi) oxide (MoO3) nanorod arrays were synthesized employing a template-assisted method. A polycarbonate membrane as a template was vacuum infiltrated with an aqueous solution of ammonium heptamolybdate. Template removal by oxygen plasma etching and calcination leads to the formation of highly crystalline 3D MoO3 nanorod arrays as a negative replica of the template. By applying sucrose as the carbon precursor, the mantling of the MoO3 nanorods with a thin carbon coating is obtained. Simultaneously, the direct and binder-free contact between the 3D MoOx nanorod arrays and the current collector resulting from the carbon coating could be achieved and leads to high capacities of up to 1376, 783, 856, 804 and 324 mA h g-1 for cycles 1, 2, 20, 50 and 200 as well as a coulombic efficiency of 99% for such 3D MoOx/C composite electrodes. The cycling performance of this 3D MoOx/C composite material is even more impressive, when comparing the determined experimental capacities with the theoretical capacities of graphite (372 mA h g-1) and MoO2 (838 mA h g-1). Additionally, MoO3 nanorod array electrodes without such an encapsulating carbon coating show an average capacity of only 175 mA h g-1 between cycles 20 and 200. Thus, the carbon coating of the MoO3 nanorod array can increase the electrochemical performance of a lithium-ion cell compared to conventional carbon additives when using MoO3 as the active anode material. This emphasizes the positive effects of the intimate and efficient electron transport and large surface area of the electrode material based on a minimal footprint architecture in Li-ion cells.
High pressure CO2 gas adsorption of tip opened CNHs is reported herein for the first time and is found to be superior to traditional CO2 adsorbents like zeolites. In addition a rare case of a binderfree CNH electrode and its performance in Li-ion storage is demonstrated.
3D WO3/C nanorod architectures have been employed as binder-free composite anodes in lithium ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.