a b s t r a c tThe identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.
By genome analysis, we previously identified Pex14/17p as a putative novel peroxin of Penicillium chrysogenum. Here, we show that Pex14/17p is a component of the peroxisomal membrane that is essential for efficient peroxisomal targeting signal 1 and peroxisomal targeting signal 2 matrix protein import, implying that the protein is indeed a genuine peroxin. Additionally, a PEX14/17 deletion strain is affected in conidiospore formation. Pex14/17p has properties of both Pex14p and Pex17p, in that the N‐terminus of this protein is similar to the highly conserved Pex5p‐binding region present in the N‐termini of Pex14p proteins, whereas its C‐terminus shows weak similarity to yeast Pex17p proteins. We have identified a novel motif in both Pex17p and Pex14/17p that is absent in Pex14p. We show that an N‐terminally truncated, but not a C‐terminally truncated, Pex14/17p is able to complement both the matrix protein import and sporulation defects of a Δpex14/17 strain, implying that it is the Pex17p‐related portion of the protein that is crucial for its function as a peroxin. Possibly, this compensates for the fact that P. chrysogenum lacks an authenthic Pex17p. We also show that, in P. chrysogenum, Pex14/17p plays a role in making the penicillin biosynthesis process more efficient.
In Aspergillus niger, the enzymes encoded by gaaA, gaaB, and gaaC catabolize d‐galacturonic acid (GA) consecutively into l‐galactonate, 2‐keto‐3‐deoxy‐l‐galactonate, pyruvate, and l‐glyceraldehyde, while GaaD converts l‐glyceraldehyde to glycerol. Deletion of gaaB or gaaC results in severely impaired growth on GA and accumulation of l‐galactonate and 2‐keto‐3‐deoxy‐l‐galactonate, respectively. Expression levels of GA‐responsive genes are specifically elevated in the ∆gaaC mutant on GA as compared to the reference strain and other GA catabolic pathway deletion mutants. This indicates that 2‐keto‐3‐deoxy‐l‐galactonate is the inducer of genes required for GA utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.