Adequate thyroid hormone availability is important for an uncomplicated pregnancy and optimal fetal growth and development. Overt thyroid disease is associated with a wide range of adverse obstetric and child development outcomes. An increasing number of studies now indicate that milder forms of thyroid dysfunction are also associated with these adverse pregnancy outcomes. The definitions of both overt and subclinical thyroid dysfunction have changed considerably over the past few years, as new data indicate that the commonly used fixed upper limits of 2.5 mU/l or 3.0 mU/l for thyroid-stimulating hormone (TSH) are too low to define an abnormal thyroid function. Furthermore, some studies now show that the reference ranges are not necessarily the best cut-off for identifying pregnancies at high risk of adverse outcomes. In addition, data suggest that thyroid peroxidase autoantibody positivity and high or low concentrations of human chorionic gonadotropin seem to have a more prominent role in the interpretation of thyroid dysfunction than previously thought. Data on the effects of thyroid disease treatment are lacking, but some studies indicate that clinicians should be aware of the potential for overtreatment with levothyroxine. Here, we put studies from the past decade on reference ranges for TSH, determinants of thyroid dysfunction, risks of adverse outcomes and options for treatment into perspective. In addition, we provide an overview of the current views on thyroid physiology during pregnancy and discuss strategies to identify high-risk individuals who might benefit from levothyroxine treatment.
BackgroundThe association of thyroid function with risk of type 2 diabetes remains elusive. We aimed to investigate the association of thyroid function with incident diabetes and progression from prediabetes to diabetes in a population-based prospective cohort study.MethodsWe included 8452 participants (mean age 65 years) with thyroid function measurement, defined by thyroid-stimulating hormone (TSH) and free thyroxine (FT4), and longitudinal assessment of diabetes incidence. Cox-models were used to investigate the association of TSH and FT4 with diabetes and progression from prediabetes to diabetes. Multivariable models were adjusted for age, sex, high-density lipoprotein cholesterol, and glucose at baseline, amongst others.ResultsDuring a mean follow-up of 7.9 years, 798 diabetes cases occurred. Higher TSH levels were associated with a higher diabetes risk (hazard ratio [HR] 1.13; 95 % confidence interval [CI], 1.08–1.18, per logTSH), even within the reference range of thyroid function (HR 1.24; 95 % CI, 1.06–1.45). Higher FT4 levels were associated with a lower diabetes risk amongst all participants (HR 0.96; 95 % CI, 0.93–0.99, per 1 pmol/L) and in participants within the reference range of thyroid function (HR 0.96; 95 % CI, 0.92–0.99). The risk of progression from prediabetes to diabetes was higher with low-normal thyroid function (HR 1.32; 95 % CI, 1.06–1.64 for TSH and HR 0.91; 95 % CI, 0.86–0.97 for FT4). Absolute risk of developing diabetes type 2 in participants with prediabetes decreased from 35 % to almost 15 % with higher FT4 levels within the normal range.ConclusionsLow and low-normal thyroid function are risk factors for incident diabetes, especially in individuals with prediabetes. Future studies should investigate whether screening for and treatment of (subclinical) hypothyroidism is beneficial in subjects at risk of developing diabetes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-016-0693-4) contains supplementary material, which is available to authorized users.
Hypothyroxinemia and TPOAb positivity are associated with an increased risk of premature delivery. The increased risk in TPOAb-positive women seems to be independent of thyroid function.
Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10−8) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P = 8.1×10−8), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P = 2.9×10−6), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P = 6.5×10−4). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22–1.54, P = 1.2×10−7 and OR: 1.25, 95% CI 1.12–1.39, P = 6.2×10−5). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P = 1.9×10−3). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.