Approaches for the capillary gas chromatographic (GC) based analysis of intact plant stanyl esters in enriched foods were developed. Reference compounds were synthesized by enzyme-catalyzed transesterifications. Their identities were confirmed by means of mass spectrometry. Using a medium polar trifluoropropylmethyl polysiloxane stationary phase, long-chain plant stanyl esters could be separated according to their stanol moieties and their fatty acid chains. Thermal degradation during GC analysis was compensated by determining response factors; calibrations were performed for ten individual plant stanyl esters. For the analysis of low-fat products (skimmed milk drinking yogurts), the GC separation was combined with a "fast extraction" under acidic conditions. For fat-based foods (margarines), online coupled LC-GC offered an elegant and efficient way to avoid time-consuming sample preparation steps. The robust and rapid methods allow conclusions on both, the stanol profiles and the fatty acid moieties, and thus provide a basis for the authentication of this type of functional food ingredients.
The study revealed large interindividual variability regarding the recoveries of dietary phytosteryl/-stanyl esters upon gastrointestinal passage in healthy humans. Nevertheless, there was a significant impact of the acid moiety (oleate=linoleate=linolenate>eicosanoate>palmitate>ferulate) on the hydrolysis rates; the influence of the phytosterol/-stanol moiety was less pronounced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.