SUMMARY Animal eyes that are primarily used under low-light conditions usually have optical systems of short depth of focus, such that chromatic defocus may lead to considerable blurring of the images. In some vertebrates, the problem is solved by multifocal lenses having concentric zones of different focal lengths, each of which focuses a different relevant spectral range onto the retina. A partially constricted circular pupil would shade the peripheral zones of the lens, leading to the loss of well-focused images at relevant wavelengths. The slit pupil, however, allows for use of the full diameter of the lens even in bright light. We studied species of terrestrial vertebrates from a variety of phylogenetic groups to establish how widespread multifocal lenses are and how pupil shapes are adapted to the optical systems. We found that multifocal lenses are common from amphibians to mammals, including primates. Slit pupils were only present in animals having multifocal optical systems. Among the felids, small species have multifocal lenses and slit pupils, while large species have monofocal lenses and round pupils. The Eurasian lynx, a cat of intermediate size, has an intermediate eye design. The functional significance of the absence of multifocal optical systems in large felids remains mysterious, because such systems are present in other large-eyed terrestrial vertebrates. Multifocal optical systems in nocturnal prosimians suggest that those animals have colour vision despite being described as cone monochromats.
β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.