A series of 3-aryl(pyrrolidin-1-yl)butanoic acids were synthesized using a diastereoselective route, via a rhodium catalyzed asymmetric 1,4-addition of arylboronic acids in the presence of ( R)-BINAP to a crotonate ester to provide the ( S) absolute configuration for the major product. A variety of aryl substituents including morpholine, pyrazole, triazole, imidazole, and cyclic ether were screened in cell adhesion assays for affinity against αβ, αβ, αβ, αβ, and αβ integrins. Numerous analogs with high affinity and selectivity for the αβ integrin were identified. The analog ( S)-3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)-4-(( R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid hydrochloride salt was found to have very high affinity for αβ integrin in a radioligand binding assay (p K = 11), a long dissociation half-life (7 h), very high solubility in saline at pH 7 (>71 mg/mL), and pharmacokinetic properties commensurate with inhaled dosing by nebulization. It was selected for further clinical investigation as a potential therapeutic agent for the treatment of idiopathic pulmonary fibrosis.
Resorcylates are a large group of bioactive natural products that are biosynthesized from acetate and malonate units via the intermediacy of polyketides. These polyketides undergo cyclization reactions to introduce the aromatic core. The bioactivities of the resorcylates including resorcylate macrocyclic lactones include anticancer, antimalarial, mycotoxicity, antifungal, and antibiotic properties, and several compounds in the series are already in use in medicine. Examples are prodrugs derived from mycophenolic acid as immunosuppressants and the Hsp-90 inhibitor, AT13387, which is in phase-II clinical trials for the treatment of small cell lung cancer and melanoma. In consequence of these biological activities, methods for the concise synthesis of diverse resorcylates are of considerable importance. In natural product chemistry, biomimetic total synthesis can have significant advantages including functional group tolerance in key steps, the minimization of the use of protection and deprotection reactions and the shortening of the total number of synthetic steps. This Account provides a description of our adaption of the dioxinone chemistry of Hyatt, Clemens, and Feldman for the synthesis and retro-Diels-Alder reactions of diketo-dioxinones. Such dioxinones, which were synthesized by a range of C-acylation reactions, were found to undergo retro-Diels-Alder reactions on heating to provide the corresponding triketo-ketenes with the loss of acetone. The ketene reactive intermediates were rapidly trapped both inter- and intramolecularly with alcohols to provide the corresponding β,δ,ζ-triketo-esters. These compounds, which consist of keto-enol mixtures, readily undergo cycloaromatization to produce resorcylate esters and macrocyclic lactones. We have established the use of diketo-dioxinones as key general intermediates for the synthesis of diverse resorcylate natural products and for the synthesis of new classes of compounds for the generation of medicinal chemistry lead structures. Many of the methods used were found to be tolerant of multiple sensitive functional groups. These include enolate C-acylations with acyl chlorides, 1-acyl-benzotriazoles, acyl imidazolides, or Weinreb amides to prepare diketo-dioxinones and their subsequent use to prepare β,δ,ζ-triketo-esters and lactones and hence resorcylates. In addition, in most cases, phenol protection was avoided. As an alternative to the synthesis of β,δ,ζ-triketo-esters, diketo-dioxinones were also found to undergo cycloaromatization with retention of the ketal entity via a nonketene pathway. Finally, diketo-dioxinones with an allyl, prenyl, geranyl, or other 2-alkenyl carboxylate esters at the γ-carbon underwent decarboxylative rearrangement with tetrakis(triphenylphosphine)palladium catalysis to produce α-substituted diketo-dioxinones and resorcylates with 3-allyl, prenyl, geranyl, or other 2-alkenyl groups. Such diketo-dioxinone chemistry was used in the total synthesis of natural products including aigialomycin, cruentaren A, and the oligomeric resorcylate ant...
(±)-Polysiphenol (1), an atropisomerically stable 4,5-dibrominated 9,10-dihydrophenanthrene from Polysiphonia ferulacea, was prepared by a biomimetically inspired highly regioselective intramolecular oxidative coupling of a dibrominated dihydrostilbene. The installation of the two bromine atoms prior to oxidative coupling prevents further oxidation to a planar aromatized phenanthrene. By this strategy, the synthesis of (±)-polysiphenol was achieved in four steps in 70% overall yield. Synthesis of the naturally occurring 5,5'-(ethane-1,2-diyl)bis(3-bromobenzene-1,2-diol) (2) (the likely biogenetic precursor of polysiphenol) and 5,5'-(ethane-1,2-diyl)bis(3,4,6-tribromobenzene-1,2-diol) (9) are also reported. The origins of the regioselectivity in the oxidative coupling are explored.
The total synthesis of hongoquercin B was carried out in 9 steps from trans,trans-farnesyl acetate using a palladium catalyzed decarboxylative π-farnesyl rearrangement of a diketo-dioxinone ester, aromatization and cationic diene-epoxide cyclization as key steps. This cascade tetracyclization simplifies the synthesis of terpenoid resorcylate natural products.
Autotaxin (ATX) facilitates the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA), a bioactive phospholipid, which facilitates a diverse range of cellular effects in multiple tissue types. Abnormal LPA expression can lead to the progression of diseases such as cancer and fibrosis. Previously, we identified a potent ATX steroid-derived hybrid (partially orthosteric and allosteric) inhibitor which did not form interactions with the catalytic site. Herein, we describe the design, synthesis, and biological evaluation of a focused library of novel steroid-derived analogues targeting the bimetallic catalytic site, representing an entirely unique class of ATX inhibitors of type V designation, which demonstrate significant pathway-relevant biochemical and phenotypic biological effects. The current compounds modulated LPA-mediated ATX allostery and achieved indirect blockage of LPA 1 internalization, in line with the observed reduction in downstream signaling cascades and chemotaxis induction. These novel type V ATX inhibitors represent a promising tool to inactivate the ATX-LPA signaling axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.