The 3D image correlation technique is used for full field measurement of strain (and strain rate) in compression and tensile split Hopkinson bar experiments using commercial image correlation software and two digital high-speed cameras that provide a synchronized stereo view of the specimen. Using an array of 128×80 (compression tests) and 258×48 (tensile tests) pixels, the cameras record about 110,000 frames per second. A random dot pattern is applied to the surface of the specimens. The image correlation algorithm uses the dot pattern to define a field of overlapping virtual gage boxes, and the 3-D coordinates of the center of each gage box are determined at each frame. The coordinates are then used for calculating the strains throughout the surface of the specimen. The strains determined with the image correlation method are compared with those determined from analyzing the elastic waves in the bars, and with strains measured with strain gages placed on the specimens. The system is used to study the response of OFE C10100 copper. In compression tests, the image correlation shows a nearly uniform deformation which agrees with the average strain that is determined from the waves in the bars and the strains measured with strain gages that are placed directly on the specimen. In tensile tests, the specimen geometry and properties affect the outcome from the experiment. The full field strain measurement provides means for examining the validity and accuracy of the tests. In tests where the deforming section of the specimen is well defined and the deformation is uniform, the strains measured with the image correlation technique agree with the average strain that is determined from the split Hopkinson bar wave records. If significant deformation is taking place outside the gage section, and when necking develops, the strains determined from the waves are not valid, but the image correlation method provides the accurate full field strain history.
Selective Laser Sintering (SLS) is an additive manufacturing process that uses a laser to fuse powdered starting materials into solid 3D structures. Despite the potential for fabrication of complex, high-resolution structures with SLS using diverse starting materials (including biomaterials), prohibitive costs of commercial SLS systems have hindered the wide adoption of this technology in the scientific community. Here, we developed a low-cost, open-source SLS system (OpenSLS) and demonstrated its capacity to fabricate structures in nylon with sub-millimeter features and overhanging regions. Subsequently, we demonstrated fabrication of polycaprolactone (PCL) into macroporous structures such as a diamond lattice. Widespread interest in using PCL for bone tissue engineering suggests that PCL lattices are relevant model scaffold geometries for engineering bone. SLS of materials with large powder grain size (~500 μm) leads to part surfaces with high roughness, so we further introduced a simple vapor-smoothing technique to reduce the surface roughness of sintered PCL structures which further improves their elastic modulus and yield stress. Vapor-smoothed PCL can also be used for sacrificial templating of perfusable fluidic networks within orthogonal materials such as poly(dimethylsiloxane) silicone. Finally, we demonstrated that human mesenchymal stem cells were able to adhere, survive, and differentiate down an osteogenic lineage on sintered and smoothed PCL surfaces, suggesting that OpenSLS has the potential to produce PCL scaffolds useful for cell studies. OpenSLS provides the scientific community with an accessible platform for the study of laser sintering and the fabrication of complex geometries in diverse materials.
In recent years, the hole drilling method for determining residual stresses has been implemented with optical methods such as holographic interferometry and ESPI to overcome certain limitations of the strain rosette version of hole drilling. Although offering advantages, the interferometric methods require vibration isolation, a significant drawback to their use outside of the laboratory. In this study, a 3D image correlation approach was used to measure micron-sized surface displacements caused by the localized stress relief associated with hole drilling. Residual stresses were then found from the displacements using non-dimensional relations previously derived by finite element analysis. A major advantage of image correlation is that it does not require interferometric vibration isolation. Experiments were performed to check the ability of this new approach for uniaxial and equi-biaxial states of stress. Stresses determined by the approach were in good agreement with computed values and those determined by hole drilling using holographic interferometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.