Recent works suggest that bacterial gene order links chromosome structure to cell homeostasis. Comparative genomics showed that, in fast-growing bacteria, ribosomal protein genes (RP) locate near the replication origin (oriC). We recently showed that Vibrio cholerae employs this positional bias as a growth optimization strategy: under fast-growth conditions, multifork replication increases RP dosage and expression. However, RP location may provide advantages in a dosage-independent manner: for example, the physical proximity of the many ribosomal components, in the context of a crowded cytoplasm, may favor ribosome biogenesis. To uncover putative dosage-independent effects, we studied isogenic V. cholerae derivatives in which the major RP locus, S10-spc-α (S10), was relocated to alternative genomic positions. When bacteria grew fast, bacterial fitness was reduced according to the S10 relative distance to oriC. The growth of wild-type V. cholerae could not be improved by additional copies of the locus, suggesting a physiologically optimized genomic location. Slow growth is expected to uncouple RP position from dosage, since multifork replication does not occur. Under these conditions, we detected a fitness impairment when S10 was far from oriC. Deep sequencing followed by marker frequency analysis in the absence of multifork replication revealed an up to 30% S10 dosage reduction associated with its relocation that closely correlated with fitness alterations. Hence, the impact of S10 location goes beyond a growth optimization strategy during feast periods. RP location may be important during the whole life cycle of this pathogen.
Background
Linezolid is a critically important antibiotic used to treat human infections caused by MRSA and VRE. While linezolid is not licensed for food-producing animals, linezolid-resistant (LR) isolates have been reported in European countries, including Belgium.
Objectives
To: (i) assess LR occurrence in staphylococci and enterococci isolated from different Belgian food-producing animals in 2019 through selective monitoring; and (ii) investigate the genomes and relatedness of these isolates.
Methods
Faecal samples (n = 1325) and nasal swab samples (n = 148) were analysed with a protocol designed to select LR bacteria, including a 44–48 h incubation period. The presence of LR chromosomal mutations, transferable LR genes and their genetic organizations and other resistance genes, as well as LR isolate relatedness (from this study and the NCBI database) were assessed through WGS.
Results
The LR rate differed widely between animal host species, with the highest rates occurring in nasal samples from pigs and sows (25.7% and 20.5%, respectively) and faecal samples from veal calves (16.4%). WGS results showed that LR determinants are present in a large diversity of isolates circulating in the agricultural sector, with some isolates closely related to human isolates, posing a human health risk.
Conclusions
LR dedicated monitoring with WGS analysis could help to better understand the spread of LR. Cross-selection of LR transferable genes through other antibiotic use should be considered in future action plans aimed at combatting antimicrobial resistance and in future objectives for the rational use of antibiotics in a One Health perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.