This brief presents an experimental study on how to take advantage of the increasing process variations in nanoscale CMOS technologies to achieve small and low-power high-speed analog-to-digital converters (ADCs). Particularly, the need for a reference voltage generation network has been eliminated in a 4-bit Flash ADC in 90-nm CMOS, with small-sized comparators. The native comparator offsets, resulting from the processvariation-induced mismatch, are used as the only source of reference levels, and redundancy is used to acquire the desired resolution. The measured performance of the 1.5-GS/s ADC is comparable to traditional state-of-the art ADCs and dissipates 23 mW.Index Terms-Flash analog-to-digital converter (ADC), highperformance design, parameter variation.
This paper presents a kick-back reduced comparator based on a sense-amplifier type comparator. The kickback charge and resulting voltage peak is reduced by 6x, which corresponds to a power reduction in the input driver and the resistance ladder of the same magnitude. A 4-6-bit 3-GS/s low-power flash ADC using the proposed comparator has been implemented in a 90nm CMOS process. The significantly lower requirements on input driver and resistance ladder have reduced the overall ADC power dissipation by 50%. Input Reference Comparator Fig. 1. Kick-back from the comparator to the inputs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.