We present COBS, a COmpact Bit-sliced Signature index, which is a cross-over between an inverted index and Bloom filters. Our target application is to index k-mers of DNA samples or q-grams from text documents and process approximate pattern matching queries on the corpus with a user-chosen coverage threshold. Query results may contain a number of false positives which decreases exponentially with the query length. We compare COBS to seven other index software packages on 100 000 microbial DNA samples. COBS' compact but simple data structure outperforms the other indexes in construction time and query performance with Mantis by Pandey et al. in second place. However, unlike Mantis and other previous work, COBS does not need the complete index in RAM and is thus designed to scale to larger document sets.
We consider text index construction in external memory (EM). Our first contribution is an inducing algorithm for suffix arrays in external memory. Practical tests show that this outperforms the previous best EM suffix sorter [Dementiev et al., ALENEX 2005] by a factor of about two in time and I/O-volume. Our second contribution is to augment the first algorithm to also construct the array of longest common prefixes (LCPs). This yields the first EM construction algorithm for LCP arrays. The overhead in time and I/O volume for this extended algorithm over plain suffix array construction is roughly two. Our algorithms scale far beyond problem sizes previously considered in the literature (text size of 80 GiB using only 4 GiB of RAM in our experiments).
Previous parallel sorting algorithms do not scale to the largest available machines, since they either have prohibitive communication volume or prohibitive critical path length. We describe algorithms that are a viable compromise and overcome this gap both in theory and practice. The algorithms are multi-level generalizations of the known algorithms sample sort and multiway mergesort. In particular our sample sort variant turns out to be very scalable. Some tools we develop may be of independent interest -a simple, practical, and flexible sorting algorithm for small inputs working in logarithmic time, a near linear time optimal algorithm for solving a constrained bin packing problem, and an algorithm for data delivery, that guarantees a small number of message startups on each processor.
We present the design and a first performance evaluation of Thrill -a prototype of a general purpose big data processing framework with a convenient data-flow style programming interface. Thrill is somewhat similar to Apache Spark and Apache Flink with at least two main differences. First, Thrill is based on C++ which enables performance advantages due to direct native code compilation, a more cachefriendly memory layout, and explicit memory management. In particular, Thrill uses template meta-programming to compile chains of subsequent local operations into a single binary routine without intermediate buffering and with minimal indirections. Second, Thrill uses arrays rather than multisets as its primary data structure which enables additional operations like sorting, prefix sums, window scans, or combining corresponding fields of several arrays (zipping).We compare Thrill with Apache Spark and Apache Flink using five kernels from the HiBench suite. Thrill is consistently faster and often several times faster than the other frameworks. At the same time, the source codes have a similar level of simplicity and abstraction.
We discuss how string sorting algorithms can be parallelized on modern multi-core shared memory machines. As a synthesis of the best sequential string sorting algorithms and successful parallel sorting algorithms for atomic objects, we propose string sample sort. The algorithm makes effective use of the memory hierarchy, uses additional word level parallelism, and largely avoids branch mispredictions. Additionally, we parallelize variants of multikey quicksort and radix sort that are also useful in certain situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.