In the oviduct, cumulus cells that surround the oocyte release progesterone. In human sperm, progesterone stimulates a Ca(2+) increase by a non-genomic mechanism. The Ca(2+) signal has been proposed to control chemotaxis, hyperactivation and acrosomal exocytosis of sperm. However, the underlying signalling mechanism has remained mysterious. Here we show that progesterone activates the sperm-specific, pH-sensitive CatSper Ca(2+) channel. We found that both progesterone and alkaline pH stimulate a rapid Ca(2+) influx with almost no latency, incompatible with a signalling pathway involving metabotropic receptors and second messengers. The Ca(2+) signals evoked by alkaline pH and progesterone are inhibited by the Ca(v) channel blockers NNC 55-0396 and mibefradil. Patch-clamp recordings from sperm reveal an alkaline-activated current carried by mono- and divalent ions that exhibits all the hallmarks of sperm-specific CatSper Ca(2+) channels. Progesterone substantially enhances the CatSper current. The alkaline- and progesterone-activated CatSper current is inhibited by both drugs. Our results resolve a long-standing controversy over the non-genomic progesterone signalling. In human sperm, either the CatSper channel itself or an associated protein serves as the non-genomic progesterone receptor. The identification of CatSper channel blockers will greatly facilitate the study of Ca(2+) signalling in sperm and help to define further the physiological role of progesterone and CatSper.
The sperm-specific CatSper channel controls the intracellular Ca(2+) concentration ([Ca(2+)](i)) and, thereby, the swimming behaviour of sperm. In humans, CatSper is directly activated by progesterone and prostaglandins-female factors that stimulate Ca(2+) influx. Other factors including neurotransmitters, chemokines, and odorants also affect sperm function by changing [Ca(2+)](i). Several ligands, notably odorants, have been proposed to control Ca(2+) entry and motility via G protein-coupled receptors (GPCRs) and cAMP-signalling pathways. Here, we show that odorants directly activate CatSper without involving GPCRs and cAMP. Moreover, membrane-permeable analogues of cyclic nucleotides that have been frequently used to study cAMP-mediated Ca(2+) signalling also activate CatSper directly via an extracellular site. Thus, CatSper or associated protein(s) harbour promiscuous binding sites that can host various ligands. These results contest current concepts of Ca(2+) signalling by GPCR and cAMP in mammalian sperm: ligands thought to activate metabotropic pathways, in fact, act via a common ionotropic mechanism. We propose that the CatSper channel complex serves as a polymodal sensor for multiple chemical cues that assist sperm during their voyage across the female genital tract.
Abstract:The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACa and PACb. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.cAMP is a ubiquitous second messenger across phyla 1 and multiple adenylyl cyclases, and phosphodiesterases are involved in its formation and degradation, respectively. A light-activated adenylyl cyclase that is crucial for photoavoidance has been identified in the unicellular flagellate Euglena gracilis 2 . This adenylyl cyclase is composed of two PACa and two PACb subunits, which exhibit adenylyl cyclase activity that is enhanced by blue light. Each subunit harbors two BLUF-type photoreceptor domains, binding flavin adenine dinucleotide 3,4 , and two catalytic domains that are homologous to
Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera. The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis. Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca 2+ concentration. In contrast to octopamine, tyramine only elicited Ca 2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.