Microsatellite diversity at 18 loci was analysed in 94 individual plants of 10 wild barley, Hordeum spontaneum (C. Koch) Thell., populations sampled from Israel across a southward transect of increasing aridity. Allelic distribution in populations was not distributed randomly. Estimates of mean gene diversity were highest in stressful arid-hot environments. Sixty-four per cent of the genetic variation was partitioned within populations and 36% between populations. Associations between ecogeographical variables and gene diversity, H(e), were established in nine microsatellite loci. By employing principle component analysis we reduced the number of ecogeographical variables to three principal components including water factors, temperature and geography. At three loci, stepwise multiple regression analysis explained significantly the gene diversity by a single principal component (water factors). Based on these observations it is suggested that simple sequence repeats are not necessarily biologically neutral.
The genetic diversity produced by the amplified fragment length polymorphism (AFLP) method was studied in 94 genotypes of wild barley, Hordeum spontaneum (C. Koch) Thell., originating from ten ecologically and geographically different locations in Israel. Eight primer pairs produced 204 discernible loci of which 189 (93%) were polymorphic. Each genotype had a unique banding profile and the genetic similarity coefficient varied between 0.74 and 0.98. The phenogram generated from these similarities by the UPGMA method did not group genotypes strictly according to their geographical origin, which pattern was also seen in the principal coordinate (PCO) plot. Genetic diversity was larger within (69%) than among (31%) populations. Associations between ecogeographical variables and the mean gene diversity were found at one primer pair. The results are discussed and compared with data obtained by the simple sequence repeat (SSR) method.
Populations of wild barley, Hordeum spontaneum (C. Koch), originating from 10 ecologically and geographically different sites in Israel, were assessed for genome size. Measurements were obtained by flow cytometry using propidium iodide staining. Genome sizes ranged from 9.35 to 9.81 pg. Variance analysis indicated a significant difference between populations. Genome sizes were positively correlated with mean January temperature. Our results corroborate previous findings of intraspecific variation in genome size from different plant species. The positive correlations between climate and genome size suggest that the latter is adaptive and determined by natural selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.