We use ab initio methods to calculate the physical and electronic properties of carbon adatoms on different characteristic carbon nanotubes. We found that for every tube the energetically favored adsorption geometry is a ''bridgelike'' structure between two surface carbons, perpendicular to the long axis of the tube. For adsorption perpendicular or parallel to the axis, the calculations show that the adatom is spin polarized, although the magnitude of the magnetic moment depends mainly on the electronic structure of the nanotube itself.
The results of molecular dynamics (MD) simulations of atomic hydrogen kinetics on graphene are presented. The simulations involve a combination of approaches based on Brenner carbon-hydrogen potential and firstprinciples force calculations. Both kinds of MD calculations predict very similar qualitative trends and reproduce equally well the features of hydrogen behavior, even such sophisticated modes as long correlated jump chains. Both approaches agree that chemisorbed hydrogen diffusion on graphene is strongly limited by thermal desorption. This limitation rules out long-range diffusion of hydrogen on graphene but does not exclude the short-range hydrogen diffusion contribution to hydrogen cluster nucleation and growth.
The paper presents a systematic study of the trends in the interaction of hydrogen with carbon fullerenes versus their curvature, where graphene is taken as the limit of zero curvature. The efficiency of hydrogen incapsulation in fullerenes, penetration into them, and adsorption on their surface are analyzed and discussed. The effects on magnetism are also considered; in particular, it is shown that hydrogen adsorption to some fullerenes induces magnetism to initially nonmagnetic systems. In addition, highly hydrogen-saturated fullerenes are examined and the suitability of fullerenes for hydrogen storage is discussed.
In this work, we use the first-principle density-functional approach to study the electronic structure of a H atom adsorbed on the ideal Pt(111) and vicinal Pt(211) and Pt(331) surfaces. Full threedimensional potential-energy surfaces (3D PES's) as well as local electronic density of states on various adsorption sites are obtained. The results show that the steps modify the PES considerably. The effect is nonlocal and extends into the region of the (111) terraces. We also find that different type of steps have different kind of influence on the PES when compared to the one of the ideal Pt(111) surface. The full 3D PES's calculated in this work provide a starting point for the theoretical study of vibrational and diffusive dynamics of H adatoms adsorbed on these vicinal surfaces.
In this paper we report the results of a multiscale study of hydrogen clusterization at the surface of (10,0) carbon nanotube. For this purpose, a systematic study of the binding energies and migration barriers of hydrogen adatom and various close adatom pairs of has been undertaken using density-functional theory approach. The interaction between hydrogen atoms on the surface of nanotube is shown to be long ranged and anisotropic. On applying the obtained potential energy surfaces for lattice kinetic Monte Carlo simulations of chemisorbed hydrogen annealihg, a noticeable influence of the annealing conditions on cluster sizes, shapes and relative populations has bean revealed, which opens a possibility for the control of hydrogen clusterization kinetics. The effect on carbon nanotube electronic structure from hydrogen dimers and trimers most frequently met in lattice kinetic Monte Carlo simulations is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.