Increasing resource consumption and a growing amount of textile waste increase the importance of a circular economy and recycling in the fashion and apparel industry. Environmentally friendly bio-based composites made from cellulosic fibres obtained from textile waste, and polymers based on renewable raw materials present a possible solution. In this study, the development of textile semi-finished products based on medium-to-long cotton and flax fibres obtained from textile waste in combination with a bio-based thermoplastic matrix for lightweight applications is investigated. For the production of natural fibre-polylactide hybrid yarns, fibre slivers with improved fibre orientation and blending are produced. Subsequently, quasi-unidirectional woven fabrics are produced and consolidated into bio-based composites. Textile and mechanical properties of hybrid yarns as well as bio-composites are analysed with regard to the influence of fibre length, fibre distribution in the yarn, yarn structure and fibre volume content. The results show that the production of bio-based semi-finished products can be a potential way for upcycling textile waste.
Within the field of textile construction, textiles are traditionally used either as decorative elements in interior design or as flat textiles in tensile-stressed lightweight constructions (roofs, temporary buildings, etc.). Technical textiles made of glass or carbon fibers are now also used as steel substitutes in concrete construction. There, flat textiles are also used as lost formwork or shaping semi-finished products. Applications for 3D textiles and in particular spacer textiles have so far only been investigated as part of multilayer constructions in combination with other elements. Otherwise, there are no studies for their application potential in the roof and wall areas of buildings and as a starting structure for opaque and translucent components. The two research projects presented here, "ReFaTex" (adjustable spacer fabrics for solar shading devices) and "ge3TEX" (warp-knitted, woven and foamed spacer fabrics) illustrate for one thing the possibilities for using 3D textiles for the construction of movable and translucently variable solar protection elements in the building envelope. Otherwise they show how 3D textiles in combination with foamed materials can be transformed into opaque, lightweight, self-supporting and insulated wall and ceiling components in the building envelope. Both projects are designed experimentally and iteratively. The results are compared in a qualifying manner, the aim being not to quantify individual measured variables but to explore the development potential of textile construction for sustainable future components and to realize the first demonstrators. In the ReFaTex project, 1:1 demonstrators with different movement mechanisms for controlling the incidence of light were realized. In the ge3TEX project, 1:1 demonstrators made of three different textile and foam materials were added to form new single-origin composite components for ceiling elements. Both projects show the great application potential for 3D textiles in the construction industry.
The present experimental work analyses the potential of lignin as a matrix for materials made from renewable resources for composite components and the production of hybrid semi-finished products by coating a flax fibre yarn. Natural fibres, due to their low density, in combination with lignin can be a new renewable source for lightweight products. For this purpose, the extrusion process was adapted to lignin as a matrix material for bio-based composites and coating of natural fibre yarns. A commercial flax yarn is the basis for the lignin coating by extrusion. Subsequently, the coated flax yarn was characterised with regard to selected yarn properties. In order to produce composite plates, the lignin-coated flax yarn was used as warp yarn in a bidirectional fabric due to its insufficient flexibility transversely to the yarn axis. The commercial flax yarn was used as weft yarn to increase the fibre volume content. The tensile and flexural properties of the bio-based composite material were determined. There was a significant difference in the mechanical properties between the warp and weft directions. The results show that lignin can be used as matrix material for bio-based natural fibre composites and the coating of natural fibre yarns is an alternative to spun hybrid yarns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.