Unlike native cartilage explants that are used in autologous tissue transfer procedures, engineered cartilage constructs are typically highly fragile when first formed and must rely on cellular activity to develop over time. However, inflammatory cytokines such as interleukin-1alpha (IL-1alpha) are often present in target joints and may interfere with this development process. Herein we examine to what extent nascent engineered tissue is susceptible to chemical perturbations by IL-1alpha (10 ng/mL), especially when compared to native explants, and whether in vitro preconditioning may promote sufficient integrity to lessen this impact. The studies were carried out using a chemically defined medium supplemented with or without the antiinflammatory steroid dexamethasone. We find that engineered tissue (bovine chondrocytes in agarose hydrogel) at early time points (days 0 and 14) does not grow when exposed to the cytokine even temporarily, but both bovine explants and more developed engineered tissue (day 28) are able to withstand the same exposure without degradation of properties. We argue therefore that some in vitro preconditioning may be necessary to promote both sufficient mechanical integrity and the chemical fortitude without which insufficiently developed engineered constructs will not survive the harsh mechanochemical environment within the joint.
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition with a birth incidence of 1/3,500. Around 50% of cases are due to new mutations. The NF1 gene maps to 17q11.2 and encodes neurofibromin. NF1 is a “classical” tumor suppressor gene. Congenital disseminated NF1 is rare with just two cases previously reported. We present a deceased baby with congenital disseminated NF1 in whom we performed molecular studies. A germline mutation (R461X) in exon 10a of the NF1 gene was found. A 2 bp deletion (3508delCA) in codon 1170 of exon 21 was identified in DNA derived from some tumor tissue. Loss of heterozygosity in NF1 and TP53 was observed in other tumor samples. No microsatellite instability was observed in the tumor samples. This is the first report of molecular analysis of the NF1 locus in a patient with disseminated congenital neurofibromatosis. This case had a de novo germline mutation in NF1 and three documented somatic mutations in the NF1 and TP53 genes in tumor specimens. © 2008 Wiley‐Liss, Inc.
High-serum media have been shown to produce significant improvement in the properties of tissue-engineered articular cartilage when applied in combination with dynamic deformational loading. To mitigate concerns regarding the culture variability introduced by serum, we examined the interplay between low-serum/ITS-supplemented media and dynamic deformational loading. Our results show that low serum/ITS supplementation does not support the same level of tissue formation as compared to high serum controls. In free-swelling culture, using a combination of ITS with concentrations of FBS above 2% negated the beneficial effects of ITS. Although there were beneficial effects with loading and 0.2%FBS + ITS, these constructs significantly underperformed relative to 20%FBS constructs. At 2%FBS + ITS, the free-swelling construct stiffness and composition approached or exceeded that of 20%FBS constructs. With dynamic loading, the properties of 2%FBS + ITS constructs were significantly lower than free-swelling controls and 20%FBS constructs by day 42. By priming the chondrocytes in 20%FBS prior to exposure to low-serum/ITS media, we observed that low-serum/ITS media produced significant enhancement in tissue properties compared to constructs grown continuously in 20%FBS.
An interplay of mechanical and chemical factors is integral to cartilage maintenance and/or degeneration. Interleukin-1 (IL-1) is a pro-inflammatory cytokine that is present at elevated concentrations in osteoarthritic joints and initiates the rapid degradation of cartilage when cultured in vitro. Several short-term studies have suggested that applied dynamic deformational loading may have a protective effect against the catabolic actions of IL-1. In the current study we examine whether the long-term (42 days) application of dynamic deformational loading on chondrocyte-seeded agarose constructs can mitigate these catabolic effects. Three studies were carried out using two IL-1 isoforms (IL-1α and IL-1β) in chemically defined medium supplemented with a broad range of cytokine concentrations and durations. Physiologic loading was unable to counteract the long-term catabolic effects of IL-1 under any of the conditions tested, and in some cases led to further degeneration over unloaded controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.