The modification of a flat-plate turbulent boundary layer resulting from the injection of drag-reducing polymer solutions through a narrow inclined slot into the near-wall region of the flow has been studied. Two-component coincident laser-Doppler velocity profile measurements were taken with a free-stream velocity of 4.5 m/s with polymer injection, water injection, and no injection. Polyethylene oxide solutions at concentrations of 500 and 1025 w.p.p.m. were injected. These data are complemented by polymer concentration profile measurements that were taken using a laser-induced-fluorescence technique. Also, integrated skin friction measurements were made with a drag balance for a range of polymer injection conditions and free-stream velocities. The immediate effects of polymer injection are a deceleration of the flow near the wall, a dramatic decrease of the vertical r.m.s. velocit}’ fluctuation levels and the Reynolds shear stress levels, and a mean velocity profile approaching Virk's asymptotic condition. These effects relax substantially with increasing stream wise distance from the injection slot and become similar to the effects observed for dilute homogeneous polymer flows.
Abstract.A technique for measuring near instantaneous concentration profiles of a fluid injected through a narrow inclined slot at the wall into a high unit Reynolds number flat plate turbulent boundary layer is discussed. The concentration profiles are determined by measuring the light intensity emitted from a fluorescent dye, premixed into the injectant flow, as the injectant convects through an excitation laser beam. The fluorescence intensity is quantified by an electronically shuttered single stage microchannel plate image intensifter coupled to a linear photodiode array. This instrumentation provided the high spatial and temporal resolution required for these boundary layer concentration profile measurements. The laser induced fluorescence technique is being used to study the diffusion of injected polymer solutions away from the near wall region of the boundary layer where these solutions are effective in reducing drag. The diffusion of slot injected water has also been examined and the present results are in excellent agreement.with previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.