A time-accurate Euler/Navier-Stokes analysis is applied to predict unsteady subsonic and transonic flows through a vibrating cascade. The intent is to validate this nonlinear analysis along with an existing linearized inviscid analysis via result comparisons for unsteady flows that are representative of those associated with blade flutter. The time-accurate analysis has also been applied to determine the relative importance of nonlinear and viscous effects on blade response. The subsonic results reveal a close agreement between inviscid and viscous unsteady blade loadings. Also, the unsteady surface pressure responses are essentially linear, and predicted quite accurately using a linearized inviscid analysis. For unsteady transonic flows, shocks and their motions cause significant nonlinear contributions to the local unsteady response. Viscous displacement effects tend to diminish shock strength and impulsive unsteady shock loads. For both subsonic and transonic flows, the energy transfer between the fluid and the structure is essentially captured by the first-harmonic component of the nonlinear unsteady solutions, but in transonic flows, the nonlinear first-harmonic and the linearized inviscid responses differ significantly in the vicinity of shocks.
A time-accurate Euler/Navier–Stokes analysis is applied to predict unsteady subsonic and transonic flows through a vibrating cascade. The intent is to validate this nonlinear analysis along with an existing linearized inviscid analysis via result comparisons for unsteady flows that are representative of those associated with blade flutter. The time-accurate analysis has also been applied to determine the relative importance of nonlinear and viscous effects on blade response. The subsonic results reveal a close agreement between inviscid and viscous unsteady blade loadings. Also, the unsteady surface pressure responses are essentially linear, and predicted quite accurately using a linearized inviscid analysis. For unsteady transonic flows, shocks and their motions cause significant nonlinear contributions to the local unsteady response. Viscous displacement effects tend to diminish shock strength and impulsive unsteady shock loads. For both subsonic and transonic flows, the energy transfer between the fluid and the structure is essentially captured by the first-harmonic component of the nonlinear unsteady solutions, but in transonic flows, the nonlinear first-harmonic and the linearized inviscid responses differ significantly in the vicinity of shocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.