We assessed the taxonomic diversity, geographic distributions, life history, ecology and fisheries of tarpons, ladyfishes and bonefishes (members of the subdivision Elopomorpha), which share many life history and habitat use characteristics that make them vulnerable to environmental and anthropogenic stresses in coastal environments. This assessment of Red List status for the International Union for the Conservation of Nature reveals three species considered near threatened or vulnerable, three species of least concern, and 11 data‐deficient species. Although the taxonomy of tarpons appears stable, it is less so for ladyfishes and bonefishes. In aggregate, these species are distributed circumtropically and foray into temperate zones. Although they spawn in marine habitats, larvae of many species disperse into estuarine habitats, which are declining in area or degrading in quality. Several species support high‐value recreational fisheries, or culturally important small‐scale commercial and artisanal fisheries. Nonetheless, no formal stock assessment exists for any species, so improved data collection, information sharing and assessment techniques should facilitate socio‐economic development of individual fisheries. Catch‐and‐release recreational fisheries that promote conservation of tarpon and bonefishes in some regions are promising models to improve the conservation status of these fishes elsewhere, as well as the economic development of these fishing communities. Most tarpons, ladyfishes and bonefishes likely face significant challenges from anthropogenically mediated habitat loss and alteration, and several are vulnerable to both habitat degradation and overfishing. Broader protection and enhancements to fisheries habitat in all regions will benefit these as well as many other coastal fishery species.
We conducted a comprehensive examination of long‐term (10+ years) fisheries‐independent data to characterize the spatial and temporal patterns of habitat selection and recruitment of juvenile gags Mycteroperca microlepis in four eastern Gulf of Mexico estuaries in Florida: Apalachicola Bay, Cedar Key, Tampa Bay, and Charlotte Harbor. Results from generalized linear modeling and habitat suitability analyses indicated that juvenile gags selected euhaline or polyhaline habitats with sloping bottoms and extensive coverage of submerged aquatic vegetation; the observed patterns were similar among estuaries. Latitudinal differences in the timing and duration of estuarine occupancy by juvenile gags were evident, with individuals appearing earlier and remaining later in more southerly estuaries. Significant interannual variability in recruitment of juvenile gags was evident within all estuaries, with high juvenile recruitment evident every 2 to 4 years. Continued efforts toward characterizing year‐class strength through the development of a regional index of juvenile gag recruitment may be useful in forecasting fisheries productivity, although such efforts would benefit greatly from an increased understanding of the relative contribution of presumed estuarine nurseries to nearshore populations.
Seagrasses, oyster reefs, and salt marshes are critical coastal habitats that support high densities of juvenile fish and invertebrates. Yet which species are enhanced through these nursery habitats, and to what degree, remains largely unquantified. Densities of young-of-year fish and invertebrates in seagrasses, oyster reefs, and salt marsh edges as well as in paired adjacent unstructured habitats of the northern Gulf of Mexico were compiled. Species consistently found at higher densities in the structured habitats were identified, and species-specific growth and mortality models were applied to derive production enhancement estimates arising from this enhanced density. Enhancement levels for fish and invertebrate production were similar for seagrass (1370 [SD 317] g m–2 y–1for 25 enhanced species) and salt marsh edge habitats (1222 [SD 190] g m–2 y–1, 25 spp.), whereas oyster reefs produced ~650 [SD 114] g m–2 y–1(20 spp). This difference was partly due to lower densities of juvenile blue crab (Callinectes sapidus) on oyster reefs, although only oyster reefs enhanced commercially valuable stone crabs (Menippe spp.). The production estimates were applied to Galveston Bay, Texas, and Pensacola Bay, Florida, for species known to recruit consistently in those embayments. These case studies illustrated variability in production enhancement by coastal habitats within the northern Gulf of Mexico. Quantitative estimates of production enhancement within specific embayments can be used to quantify the role of essential fish habitat, inform management decisions, and communicate the value of habitat protection and restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.