We demonstrate a new plasmonic pixel (PP) design that produces a full-color optical response over macroscopic dimensions. The pixel design employs arrays of aluminum nanorods "floating" above their Babinet complementary screen, Concepts from conventional cyan magenta yellow key (CMYK) printing techniques and red green blue (RGB) digital displays are integrated with nanophotonic design principles and adapted to the production of PP elements. The fundamental PP color blocks of CMYK are implemented via a composite plasmonic nanoantenna/slot design and then mixed in a digital display analog 3 × 3 array to produce a broad-gamut PP. The PP goes beyond current investigations into plasmonic color production by enabling a broad color gamut and physically large plasmonic color features/devices/images. The use of nanorods also leads to a color response that is polarization tunable. Furthermore, devices are fabricated using aluminum and the fabrication strategy is compatible with inexpensive, rapid-throughput, nanoimprint approaches. Here we quantify, both computationally and experimentally, the performance of the PP. Spectral data from a test palette is obtained and a large area (>1.5 cm lateral dimensions) reproduction of a photograph is generated exemplifying the technqiue.
A major goal of nanotechnology is the assembly of nanoscale building blocks into functional optical, electrical, or chemical devices. Many of these applications depend on an ability to optically or electrically address single nanoparticles. However, positioning large numbers of single nanocrystals with nanometer precision on a substrate for integration into solid-state devices remains a fundamental roadblock. Here, we report fast, scalable assembly of thousands of single nanoparticles using electrophoretic deposition. We demonstrate that gold nanospheres down to 30 nm in size and gold nanorods <100 nm in length can be assembled into predefined patterns on transparent conductive substrates within a few seconds. We find that rod orientation can be preserved during deposition. As proof of high fidelity scale-up, we have created centimeter scale patterns comprising more than 1 million gold nanorods.
The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.