We report a chemically defined, efficient, scalable and reproducible protocol for differentiation of human embryonic stem cells (hESCs) toward chondrocytes. HESCs are directed through intermediate developmental stages using substrates of known matrix proteins and chemically defined media supplemented with exogenous growth factors. Gene expression analysis suggests that the hESCs progress through primitive streak or mesendoderm to mesoderm, before differentiating into a chondrocytic culture comprising cell aggregates. At this final stage, 74% (HUES1 cells) and up to 95-97% (HUES7 and HUES8 cells) express the chondrogenic transcription factor SOX9. The cell aggregates also express cell surface CD44 and aggrecan and deposit a sulfated glycosaminoglycan and cartilage-specific collagen II matrix, but show very low or no expression of genes and proteins associated with nontarget cell types. Our protocol should facilitate studies of chondrocyte differentiation and of cell replacement therapies for cartilage repair.
Human bone marrow stem cells (hMSCs) have been shown to differentiate in vitro into a number of cell lineages and are a potential autologous cell source for the repair and replacement of damaged and diseased musculoskeletal tissues. hMSC differentiation into chondrocytes has been described in highdensity cell pellets cultured with specific growth and differentiation factors. We now describe how culture of hMSCs as a shallow multicellular layer on a permeable membrane over 2-4 weeks resulted in a much more efficient formation of cartilaginous tissue than in established chondrogenic assays. In this format, the hMSCs differentiated in 14 days to produce translucent, flexible discs, 6 mm in diameter by 0.8 -1 mm in thickness from 0.5 ؋ 10 6 cells. The discs contained an extensive cartilage-like extracellular matrix (ECM), with more than 50% greater proteoglycan content per cell than control hMSCs differentiated in standard cell pellet cultures. The disc constructs were also enriched in the cartilage-specific collagen II, and this was more homogeneously distributed than in cell pellet cultures. The expression of cartilage matrix genes for collagen type II and aggrecan was enhanced in disc cultures, but improved matrix production was not accompanied by increased expression of the transcription factors SOX9, L-SOX5, and SOX6. The fast continuous growth of cartilage ECM in these cultures up to 4 weeks appeared to result from the geometry of the construct and the efficient delivery of nutrients to the cells. Scaffold-free growth of cartilage in this format will provide a valuable experimental system for both experimental and potential clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.