In this paper, main challenges of underwater photogrammetry in shallow waters are described and analysed. The very short camera to object distance in such cases, as well as buoyancy issues, wave effects and turbidity of the waters are challenges to be resolved. Additionally, the major challenge of all, caustics, is addressed by a new approach for caustics removal (Forbes et al., 2018) which is applied in order to investigate its performance in terms of SfM-MVS and 3D reconstruction results. In the proposed approach the complex problem of removing caustics effects is addressed by classifying and then removing them from the images. We propose and test a novel solution based on two small and easily trainable Convolutional Neural Networks (CNNs). Real ground truth for caustics is not easily available. We show how a small set of synthetic data can be used to train the network and later transfer the learning to real data with robustness to intra-class variation. The proposed solution results in caustic-free images which can be further used for other tasks as may be needed.
Caustics are complex physical phenomena resulting from the projection of light rays being reflected or refracted by a curved surface. In this work, we address the problem of classifying and removing caustics from images and propose a novel solution based on two Convolutional Neural Networks (CNNs): SalienceNet and DeepCaustics. Caustics result in changes in illumination which are continuous in nature, therefore the first network is trained to produce a classification of caustics which is represented as a saliency map of the likelihood of caustics occurring at a pixel. In applications where caustic removal is essential, the second network is trained to generate a caustic-free image. It is extremely hard to generate real ground truth for caustics. We demonstrate how synthetic caustic data can be used for training in such cases, and then transfer the learning to real data. To the best of our knowledge, out of the handful of techniques which have been proposed this is the first time that the complex problem of caustic removal has been reformulated and addressed as a classification and learning problem. This work is motivated by the real-world challenges in underwater archaeology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.