Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
This is the first part of a two part paper that describes the results of an experimental investigation to measure the aerodynamic pressure forces on structures in the vicinity of railway tracks. The investigations were carried out in order to obtain a fundamental understanding of the nature of the phenomenon and to obtain data for a variety of railway infrastructure geometries of particular relevance to the GB situation, in order to provide material for a National Annex to the relevant Eurocode. The experiments were carried out on the moving model TRAIN Rig, with models of three different sorts of trains with different nose types, and a variety of infrastructures typesvertical hoardings, overbridges, station canopies and trestle platforms. The transient loads that were measured had a characteristic forma positive pressure peak followed by a negative pressure peak. In general the magnitudes of the two peaks were different, and varied with infrastructure type and position, as well as with train type. As would be expected, the more streamlined the train, the lower were the magnitudes of the pressure transients. A comparison of the experimental results was made with a variety of existing model scale and full scale data and a broad consistency was demonstrated, within the limits that the rather different experimental conditions in the various cases would allow. An analysis of the scaling of these pressure transients was carried out, and it was shown that whilst there was a reasonable collapse around a theoretical formulation, the complexity of the flows involved meant that a general scaling formulation could not be achieved. Part 2 of this paper will consider the application of the results to the development of revised standards formulations.
The theory and practice of train-induced aerodynamic pressure loads on surfaces near to the tracks is compromised by an incomplete understanding of trains operating in short tunnels, partially enclosed spaces, and next to simple structures such as vertical walls. Unique pressure-loading patterns occur in each case. This work has been carried out to obtain a fundamental understanding of how these loading patterns transition from one to the other as the infrastructure becomes more confined. It also considers the impact of the results on two separate European codes of practice applying to tunnels and other structures. A parametric moving-model study was undertaken, transitioning from the open air to single and double vertical walls, partially enclosed spaces, short single-track tunnels and a longer tunnel. The train model was based on a German ICE2, and was fired at 32 m/s past the structures. Multiple surface pressure tappings and in-flow probes were used, providing the opportunity to assess the three-dimensional nature of the pressure and velocity fields. The experiments successfully mapped the transition between the three loading patterns and isolated the geometric changes. Further loading patterns were discovered relating to the length of the train, the length of the tunnel and the distance from the tunnel entrance. The three-dimensional nature of the pressure was related to the length of the tunnel and the distance from the tunnel entrance. Issues surrounding the lack of provision in codes of practice for short tunnels were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.