Household flocks of scavenging chickens were monitored from August 2002 to August 2003 in 27 villages in Lilongwe, Malawi. The objective was to evaluate the local chicken production system by investigating flock structure, utilization, management and constraints. Farmers and researchers jointly obtained data on household flocks. Mean flock size was 12.9, with a range of 1-61 chickens. The flock dynamics of chickens over 8 weeks old constituted 91% migrating out of flocks and 9% into the flocks. Primary functions based on flock dynamics were, in order of importance, household consumption, participation in socio-cultural ceremonies, selling, exchanging breeding stock and gifts. Of the flock exits, 43.9% were due to losses from diseases, predation and theft. Most flocks (85%) were housed in human dwelling units. Scavenging was the main source of feed. The majority (77.6%) of farmers supplemented their chickens erratically with energy-rich feeds, mostly maize bran. Most supplementation took place during the cold-dry season. Village chicken production offers diverse functional outputs but faces animal health (diseases, parasites, predation) and management (feeding) constraints, which require an integrated intervention approach at community and household level.
BackgroundRuns of homozygosity (ROH) islands are stretches of homozygous sequence in the genome of a large proportion of individuals in a population. Algorithms for the detection of ROH depend on the similarity of haplotypes. Coverage gaps and copy number variants (CNV) may result in incorrect identification of such similarity, leading to the detection of ROH islands where none exists. Misidentified hemizygous regions will also appear as homozygous based on sequence variation alone. Our aim was to identify ROH islands influenced by marker coverage gaps or CNV, using Illumina BovineHD BeadChip (777 K) single nucleotide polymorphism (SNP) data for Austrian Brown Swiss, Tyrol Grey and Pinzgauer cattle.MethodsROH were detected using clustering, and ROH islands were determined from population inbreeding levels for each marker. CNV were detected using a multivariate copy number analysis method and a hidden Markov model. SNP coverage gaps were defined as genomic regions with intermarker distances on average longer than 9.24 kb. ROH islands that overlapped CNV regions (CNVR) or SNP coverage gaps were considered as potential artefacts. Permutation tests were used to determine if overlaps between CNVR with copy losses and ROH islands were due to chance. Diversity of the haplotypes in the ROH islands was assessed by haplotype analyses.ResultsIn Brown Swiss, Tyrol Grey and Pinzgauer, we identified 13, 22, and 24 ROH islands covering 26.6, 389.0 and 35.8 Mb, respectively, and we detected 30, 50 and 71 CNVR derived from CNV by using both algorithms, respectively. Overlaps between ROH islands, CNVR or coverage gaps occurred for 7, 14 and 16 ROH islands, respectively. About 37, 44 and 52% of the ROH islands coverage in Brown Swiss, Tyrol Grey and Pinzgauer, respectively, were affected by copy loss. Intersections between ROH islands and CNVR were small, but significantly larger compared to ROH islands at random locations across the genome, implying an association between ROH islands and CNVR. Haplotype diversity for reliable ROH islands was lower than for ROH islands that intersected with copy loss CNVR.ConclusionsOur findings show that a significant proportion of the ROH islands in the bovine genome are artefacts due to CNV or SNP coverage gaps.Electronic supplementary materialThe online version of this article (10.1186/s12711-018-0414-x) contains supplementary material, which is available to authorized users.
Goats have a key role in ensuring food security and economic livelihood to smallholder farmers in rural areas. Women play a vital role in goat rearing, promoting economic autonomy within households. Indigenous goats dominate and are of high significance due to their adaptive traits that are relevant for climate change and low maintenance. However, lack of emphasis on farmer-centered technology development and proper breed characterization remains a hitch to sustainable utilization and breed development of indigenous goats. This can be over come through proper linkage between market and production, workable regional and national agricultural policies, community breeding programs, collaborative research work within the region, and consistent government support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.