Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.
There is substantial interest in stopping and reversing the effects of subsidence in the Sacramento-San Joaquin Delta (Delta) where organic soils predominate. Also, the passage of California Assembly Bill 32 in 2006 created the potential to trade credits for carbon sequestered in wetlands on subsided Delta islands. The primary purpose of the work described here was to estimate future vertical accretion and understand processes that affect vertical accretion and carbon sequestration in impounded marshes on subsided Delta islands. Using a cohort-accounting model, we simulated vertical accretion from 4,700 calibrated years before present (BP) at a wetland area located within Franks Tract State Recreation Area (lat 38.059, long −121.611, hereafter, "Franks Wetland")-a small, relatively undisturbed marsh island-and at the Twitchell Island subsidencereversal demonstration project since 1997. We used physical and chemical data collected during the study as well as literature values for model inputs. Model results compared favorably with measured rates of vertical accretion, mass of carbon sequestered, bulk density and organic matter content.From 4,700 to model-estimated 350 years BP, the simulated rate of vertical accretion at Franks Wetland averaged about 0.12 cm yr -1 , which is within the range of rates in tidal wetlands worldwide. Our model results indicate that large sediment inputs during the last 150 to 200 years resulted in a higher accretion rate of 0.3 cm yr -1 . On Twitchell Island, greater organic inputs resulted in average vertical accretion rates as high as 9.2 cm yr -1 . Future simulations indicate that the managed impounded marsh will accrete highly organic material at rates of about 3 cm yr -1 . Model results coupled with GIS analysis indicate that large areas of the periphery of the Delta, if impounded and converted to freshwater marsh, could be restored to tidal elevations within 50 to 100 years. Most of the central Delta would require 50 to 250 years to be restored to projected mean sea level. A large portion of the western Delta could be restored to mean sea level within 50 to 150 years (large areas on Sherman, Jersey, and Bethel islands, and small areas on Bradford, Twitchell, and Brannan islands, and Webb Tract). We estimated that long-term carbon sequestration rates for impounded marshes such as the Twitchell Island demonstration ponds will range from 12 to 15 metric tons carbon ha -1 yr -1 . Creation of impounded marshes on Delta islands can substantially benefit levee stability as demonstrated by cumulative force and hydraulic gradient calculations.1 HydroFocus, Inc., Davis, CA USA 2 U.S. Geological Survey, California Water Science Center Sacramento, CA USA * Corresponding author: sdeverel@hydrofocus.com SAN FRANCISCO ESTUARY & WATERSHED SCIENCE 2 INTRODUCTIONThe 300,000-ha Sacramento-San Joaquin Delta is a critical natural resource, important agricultural region and the hub for California's water supply. Within an area of about 81,000 ha in the central Delta, an estimated 4.5 billion ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.