No abstract
In this paper, we propose Database Processing Units, or DPUs, a class of domain-specific database processors that can efficiently handle database applications. As a proof of concept, we present the instruction set architecture, microarchitecture, and hardware implementation of one DPU, called Q100. The Q100 has a collection of heterogeneous ASIC tiles that process relational tables and columns quickly and energy-efficiently. The architecture uses coarse grained instructions that manipulate streams of data, thereby maximizing pipeline and data parallelism, and minimizing the need to time multiplex the accelerator tiles and spill intermediate results to memory. This work explores a Q100 design space of 150 configurations, selecting three for further analysis: a small, power-conscious implementation, a highperformance implementation, and a balanced design that maximizes performance per Watt. We then demonstrate that the power-conscious Q100 handles the TPC-H queries with three orders of magnitude less energy than a state of the art software DBMS, while the performance-oriented design outperforms the same DBMS by 70X.
In this paper, we propose Database Processing Units, or DPUs, a class of domain-specific database processors that can efficiently handle database applications. As a proof of concept, we present the instruction set architecture, microarchitecture, and hardware implementation of one DPU, called Q100. The Q100 has a collection of heterogeneous ASIC tiles that process relational tables and columns quickly and energy-efficiently. The architecture uses coarse grained in- structions that manipulate streams of data, thereby maximizing pipeline and data parallelism, and minimizing the need to time multiplex the accelerator tiles and spill inter- mediate results to memory. This work explores a Q100 de- sign space of 150 configurations, selecting three for further analysis: a small, power-conscious implementation, a high- performance implementation, and a balanced design that maximizes performance per Watt. We then demonstrate that the power-conscious Q100 handles the TPC-H queries with three orders of magnitude less energy than a state of the art software DBMS, while the performance-oriented design out- performs the same DBMS by 70X.
In this paper, we propose Database Processing Units, or DPUs, a class of domain-specific database processors that can efficiently handle database applications. As a proof of concept, we present the instruction set architecture, microarchitecture, and hardware implementation of one DPU, called Q100. The Q100 has a collection of heterogeneous ASIC tiles that process relational tables and columns quickly and energy-efficiently. The architecture uses coarse grained in- structions that manipulate streams of data, thereby maximizing pipeline and data parallelism, and minimizing the need to time multiplex the accelerator tiles and spill inter- mediate results to memory. This work explores a Q100 de- sign space of 150 configurations, selecting three for further analysis: a small, power-conscious implementation, a high- performance implementation, and a balanced design that maximizes performance per Watt. We then demonstrate that the power-conscious Q100 handles the TPC-H queries with three orders of magnitude less energy than a state of the art software DBMS, while the performance-oriented design out- performs the same DBMS by 70X.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.