Individuals frequently make use of the body and environment when engaged in a cognitive task. For example, individuals will often spontaneously physically rotate when faced with rotated objects, such as an array of words, to putatively offload the performance costs associated with stimulus rotation. We looked to further examine this idea by independently manipulating the costs associated with both word rotation and array frame rotation. Surprisingly, we found that individuals' patterns of spontaneous physical rotations did not follow patterns of performance costs or benefits associated with being physically rotated, findings difficult to reconcile with existing theories of strategy selection involving external resources. Individuals' subjective ratings of perceived benefits, rather, provided an excellent match to the patterns of physical rotations, suggesting that the critical variable when deciding on-the-fly whether to incorporate an external resource is the participant's metacognitive beliefs regarding expected performance or the effort required for each approach (i.e., internal vs. internal + external). Implications for metacognition's future in theories of cognitive offloading are discussed.
In the current set of experiments our goal was to test the hypothesis that individuals avoid courses of action based on a kind of metacognitive evaluation of demand in a Demand Selection Task (DST). Individuals in Experiment 1 completed a DST utilizing visual stimuli known to yield a dissociation between performance and perceived demand. Patterns of demand avoidance followed that of perceived demand. Experiment 2 provided a replication of the aforementioned results, in addition to demonstrating a second dissociation between a peripheral physiological measure of demand (i.e., blink rates) and demand avoidance. Experiment 3 directly tested the assumption that individuals make use of a general metacognitive evaluation of task demand during selections. A DST was utilized in a forced-choice paradigm that required individuals to either select the most effortful, time demanding, or least accurate of 2 choices. Patterns of selections were similar across all rating dimensions, lending credit to this notion. Findings are discussed within a metacognitive framework of demand avoidance and contrasted to current theories. (PsycINFO Database Record
The gene encoding the receptor for macrophage colony-stimulating factor 1 (CSF-1), the c-fins protooncogene, is selectively expressed in immature and mature mononuclear phagocytes and trophoblasts. Exon 1 is expressed only in trophoblasts. Isolation and sequencing of genomic DNA flanking exon 2 of the murine c-ins gene revealed a TATA-less promoter with significant homology to human c-Jins. Reverse transcriptase primer extension analysis using exon 2 primers identified multiple clustered transcription initiation sites. Their position was confirmed by RNase protection. The same primer extension products were detected in equal abundance from macrophage or nonmacrophage sources of RNA. c-Jins mRNA is acutely down-regulated in primary macrophages by CSF-1, bacterial lipopolysaccharide (LPS), and phorbol myristate acetate (PMA). Each of these agents reduced the abundance of c-fns RNA detectable by primer extension using an exon 3 primer without altering the abundance of presumptive short c-Jins transcripts detected with exon 2 primers. Primer extension analysis with an intron 2 primer detected products at greater abundance in nonmacrophages.Templates detected with the intronic primer were induced in macrophages by LPS, PMA, and CSF-1, suggesting that each of the agents caused a shift from full-length c-Jins mRNA production to production of unspliced, truncated transcripts. The c-Jins promoter functioned constitutively in the RAW264 macrophage cell line, the B-cell line MOPC.31C, and several nonhematopoietic cell lines. Macrophage-specific expression and responsiveness to selective repression by LPS and PMA was achieved by the incorporation of intron 2 into the c-Jins promoter-reporter construct. The results suggest that expression of the c-fins gene in macrophages is controlled by sequences in intron 2 that act by regulating transcription elongation.
Why are some actions evaluated as effortful? In the present set of experiments we address this question by examining individuals' perception of effort when faced with a trade-off between two putative cognitive costs: how much time a task takes vs. how error-prone it is. Specifically, we were interested in whether individuals anticipate engaging in a small amount of hard work (i.e., low time requirement, but high error-likelihood) vs. a large amount of easy work (i.e., high time requirement, but low error-likelihood) as being more effortful. In between-subject designs, Experiments 1 through 3 demonstrated that individuals anticipate options that are high in perceived error-likelihood (yet less time consuming) as more effortful than options that are perceived to be more time consuming (yet low in error-likelihood). Further, when asked to evaluate which of the two tasks was (a) more effortful, (b) more error-prone, and (c) more time consuming, effort-based and error-based choices closely tracked one another, but this was not the case for time-based choices. Utilizing a within-subject design, Experiment 4 demonstrated overall similar pattern of judgments as Experiments 1 through 3. However, both judgments of error-likelihood and time demand similarly predicted effort judgments. Results are discussed within the context of extant accounts of cognitive control, with considerations of how error-likelihood and time demands may independently and conjunctively factor into judgments of cognitive effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.