This report documents the geomorphic assessment component of the Old River, Mississippi River, Atchafalaya River, and Red River System Technical Assessment. The overall objectives of the geomorphic assessment are to utilize all available data to document the historic trends in hydrology, sedimentation, and channel geometry for the rivers in the vicinity of the Old River Control Complex and to summarize the changes observed at locations where repetitive datasets exist and at key reaches that are determined during the study. The geomorphic assessment tasks include data compilation, geometric data analysis, gage and discharge analysis, dredge record analysis, sediment data analysis, development of an events timeline, and integration of results. Geomorphic reaches were developed, and the morphological trends during different time periods were identified. The geomorphic assessment highlighted the importance of considering spatial and temporal variability when assessing morphological trends.
In-water beneficial use of dredged sediment provides the US Army Corps of Engineers (USACE) the opportunity to increase beneficial use while controlling costs. Beneficial use projects in riverine environments include bank and near-bank placement, where sediments can protect against bank erosion and support habitat diversity. While bank and near-bank placement of navigation dredged sediment to support river-bank stabilization and habitat is currently practiced, documented examples are sparse. Documenting successful projects can support advancing the practice across USACE. In addition, documentation identifies data gaps required to develop engineering and ecosystem restoration guidance using navigation-dredged sediment. This report documents five USACE and international case studies that successfully applied these practices: Ephemeral Island Creation on the Upper Mississippi River; Gravel Island Creation on the Danube River; Gravel Bar Creation on the Tombigbee River; Wetland Habitat Restoration on the Sacramento-San Joaquin River Delta; and Island and Wetland Creation on the Lower Columbia River Estuary. Increased bank and near-bank placement can have multiple benefits, including reduced dredge volumes that would otherwise increase as banks erode, improved sustainable dredged sediment management strategies, expanded ecosystem restoration opportunities, and improved flood risk management. Data collected from site monitoring can be applied to support development of USACE engineering and ecosystem restoration guidance.
This is the main report of Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment. The primary objective of the OMAR Technical Assessment was to conduct a comprehensive evaluation that aimed to understand the impacts of former and potential changes to the system in the vicinity of the Old River Control Complex (ORCC) over time, the water and sediment delivery regime at the ORCC, and the effects to the river system surrounding the ORCC. Scenarios evaluated in this technical assessment were designed to investigate potential system responses to a wide range of possible operational alternatives and identify knowledge gaps in current understanding of system behavior. This report summarizes and synthesizes the individual reports detailing the investigations into specific aspects of the ORCC and the surrounding region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.